Skip to main content

Community Repository Search Results

resource project Exhibitions
The Mississippi Children’s Museum will complete WonderBox, a 1,500 square foot-STEAM exhibit in the museum’s existing arts gallery. WonderBox will address a critical need in Mississippi for increased education in STEAM subjects during elementary grades—particularly for those individuals who are underserved and lack adequate access to resources. Through the proposed exhibit area and programming, children from all backgrounds will explore topics such as design, art, coding, robotics, engineering, and circuitry. It will encourage active exploration and inquiry-based learning while facilitating parent/caregiver interaction with hands-on activities and guided conversations that will inspire children to design, create, and invent. Additionally, the gallery will offer children opportunities to interact with concepts from industries that are vital to Mississippi’s economy in an environment that encourages innovation and creative problem solving.
DATE: -
TEAM MEMBERS: Susan Easom Garrard
resource project Exhibitions
The National Building Museum will plan and design an exhibition to tell the story of the design, planning, and construction of the Washington DC Metro system. The exhibition will explore the history, design, engineering and construction process. It will also contain stories of the residents whose lives were disrupted by Metro’s construction. An exhibition team will document memories from the large community of Metro riders, and an advisory committee will help refine the project’s themes. Working with external consultants, the museum will prototype interactive exhibit components and test narratives through surveys and focus groups with a broad range of stakeholders. The project will result in a schematic of the exhibition’s floor plan, style sheets for graphic treatments, and initial planning for media elements. The museum’s education staff will develop educational resources incorporating STEAM themes to accompany the exhibition.
DATE: -
TEAM MEMBERS: Cathy Cane Frankel
resource project Exhibitions
The Portland Children’s Museum will open a new exhibition, “Drip City,” which focuses on water as a precious natural resource that has shaped the region’s geography, weather, and culture. Following an IMLS-funded evaluation and design process, the museum will engage a local fabrication company to construct and install exhibit components that explore concepts in science, engineering, and art. The museum will also engage community members in the design and testing of associated programs that target families and children ages 0 to 7. Museum staff will evaluate all exhibit elements to ensure they are working properly, accessible as intended, and making children’s learning visible to adult audiences.
DATE: -
TEAM MEMBERS: Jennifer Fang
resource project Public Programs
Miami Children's Museum will redesign its Construction Zone Gallery into a STEM-learning space providing children, primarily ages eight and under, with a stimulating and interactive experience. The exhibition will incorporate 13 distinctive exhibition components, allowing full engagement in a variety of STEM-based learning activities. The museum will conduct focus group activities with field interpreters, specialists and educators working in STEM fields to guide and refine content development of the script and exhibition layout, followed by testing of the themes, programming activities, exhibition props and tools, software concepts, and learning outcomes. The project team will develop accompanying programming for children to be presented at the museum and at area public libraries. All components of the exhibition will support Florida's Early Learning Standards, and will meet the evolving educational needs of its youngest learners.
DATE: -
TEAM MEMBERS: Anais Rodriguez
resource project Exhibitions
Sciencenter will develop a touring exhibition, Engineer.Design.Build, to spark interest and build confidence in STEM by providing learning opportunities about the broad impact engineers have on the environment and society. The museum will partner with Cornell University's College of Engineering to develop scientific content which will be reviewed by an advisory board of representatives from the academic, business, and informal science education sectors. Partners from informal learning institutions will provide expertise on the educational content to ensure that it is accessible and engaging for the target audience of 5-11 year olds. Through a combination of focus groups, youth/guest feedback during exhibition development, and experts in girls' engagement in STEM on the advisory board, the museum will ensure that the exhibition and programming are designed to appeal to girls, and accessible to all learners. The project will include front-end, formative, and summative evaluation through observations and mediated interviews, collecting data from youth, families, and school groups.
DATE: -
TEAM MEMBERS: Michelle Kortenaar
resource project Public Programs
The Pacific Science Center will develop new evaluation tools to assess the impact of Tinker Tank, a visitor-directed, hands-on design space in which participants are challenged to use their creativity, problem solving, and experience to understand the processes of design, engineering, and science. The project will allow the museum to determine which tools, adapted from both informal learning settings (such as timing and tracking studies, observations, surveys, and focus groups) and formal settings (such as design journals, digital portfolios, and badging),are most suitable for providing meaningful data about the learning and engagement occurring in its makerspace. By adjusting and refining the evaluation tools and methods, the museum will be able to measure learning in its makerspace, determine the extent to which it is achieving the goals and objectives of its Tinker Tank, and guide planning for expansion of making activities into different areas of its exhibition floor.
DATE: -
TEAM MEMBERS: Diana Johns
resource project Exhibitions
To build understanding of the essential needs involved in human exploration on Mars, the museum will create the Build a Mars Habitat – Survive and Thrive exhibit which allows museum visitors, especially school field trips and families with children in grades 4-8, to design and construct their own imaginary habitat for successful living on Mars using interchangeable building pieces. This would be designed to appeal particularly to girls, be accessible to audiences using a universal design approach, and be understood by Spanish-language visitors. Partnerships include the National Informal STEM Education Network (NISENet), NASA Ames Research Center, and NASA Marshall Space Flight Center. The project team will also develop professional development materials for both facilitated and unfacilitated experiences to accompany the exhibit. This immersive experience augments the existing “Sun, Earth, Universe” exhibit that was recently distributed to 52 science and children’s museums across the U.S. by NISENet, collectively reporting attendance of over 10 million visitors per year. The exhibition serves as a platform for scientists and museum staff and volunteers to engage visitors with additional facilitated educational programming and hands-on experiences. Anticipated STEM learning outcomes include audience’s increased interest and positive attitudes towards learning about space exploration, increase in informal education professionals’ capacity to engage public audiences in space exploration, and strengthened partnerships among NASA and museums.
DATE: -
TEAM MEMBERS: Ethan Kruszka Catherine McCarthy
resource research Public Programs
Reframing engineering activities to emphasize the needs of others has the potential to strengthen engineering practices like problem scoping, while also providing more inclusive and socially relevant entry points into engineering problems. In a three-year design-based research project, we developed novel strategies for adding narratives to engineering activities to deepen girls’ engagement in engineering practices by evoking empathy for the users of their designs. In this article, we describe a set of hands-on engineering activities developed through iterative development and testing with 190
DATE:
resource evaluation Exhibitions
This front-end evaluation study is part of Designing Our Tomorrow: Mobilizing the Next Generation of Engineers, a five-year project (2018–2023) led by the Oregon Museum of Science and Industry (OMSI) with the support of the National Science Foundation (NSF, DRL-1811617) and project partners: Adelante Mujeres, the Biomimicry Institute, and the Fleet Science Center. The Designing Our Tomorrow (DOT) project seeks to promote and strengthen family engagement and engineering learning via compelling exhibit-based design challenges, presented through the lens of sustainable design exemplified by
DATE:
resource research Exhibitions
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS: Ibrahim Yeter Anastasia Marie Rynearson Hoda Ehsan Annwesa Dasgupta Barbara Fagundes Muhsin Meneske Monica Cardella
resource project Public Programs
Informal learning institutions, such as science centers and museums, are well-positioned to broaden participation in engineering pathways by providing children from underrepresented groups with motivational, self-directed engineering design experiences. Though many informal learning institutions offer opportunities for young visitors to engage in engineering activities, little is known about the specific features of these activities that support children's motivation in engineering design processes such as problem scoping, testing, and iteration. This project will address this gap and advance foundational knowledge by identifying features of engineering design activities, as implemented within an informal setting, which support underrepresented children's engineering motivation and persistence in engineering tasks. Researchers at New York Hall of Science (NYSCI) will observe children interacting with families and museum educators as they engage in different engineering design activities in NYSCI's Design Lab, an exhibition space devoted to hands-on exploration of engineering design. They will also survey and interview the children and their caregivers about these experiences. Analyses of these data sources will result in a description of features of design activities foster motivation and task persistence in engineering design. Findings will be disseminated nationally to other informal learning institutions, which in turn can use the knowledge generated from this project to create motivational, research-based, field-tested engineering design experiences for young visitors, especially for children from underrepresented groups. The experiences may encourage children to further pursue engineering pathways, resulting in a diversified engineering workforce with the potential to drive and sustain national innovation and global technological leadership.

This project uses the framework of goal orientation, defined as learners' self-reflection of why and how they engage in tasks, to understand whether, how, and why underrepresented 7-12-year-olds engage in engineering design activities in an informal learning institution. Though previous research has suggested that goal orientation is strongly, positively related to learning and motivation in formal settings such as schools, research in informal settings has not robustly accounted for the role of goal orientation in participants' engagement with learning tasks in these unique learning environments. To better understand how children's goal orientations contribute to their motivation in engineering in informal learning institutions, researchers will answer the following research questions: (1) What are underrepresented children's goals and goal orientations while participating in engineering design activities in an informal setting? (2) What contextual factors--including facilitation strategies, materials, task relevance, and social interactions with family members--may support or discourage the adoption of different goal orientations? (3) How do goal orientations relate to children's learning experience in the engineering design activities and the likelihood that they will test and iterate their solutions? These questions will be answered through a mixed-method research study conducted with approximately 200 families, with children aged 7-12, recruited from underrepresented groups. Semi-structured clinical interviews, conducted with 20% of the children and their caregivers, as well as observations and surveys gathered from all families, will provide information on the children's goal orientation and engagement as they relate to specific engineering design activities. Qualitative content analyses and multilevel structural equation modeling will result in findings that will be disseminated widely to other institutions of informal learning. Ultimately, this project will generate new empirical knowledge regarding the features of engineering design activities in informal learning environments that increase engineering engagement and motivation among underrepresented children, thereby broadening participation in engineering pathways.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: ChangChia James Liu Dorothy Bennett Katherine Culp
resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -