Skip to main content

Community Repository Search Results

resource evaluation Public Programs
This report presents findings from the evaluation of four Pulsar Search Collaboratory (PSC) activities: online training, use of website, capstone events at hub institutions, and the PSC summer camp.
DATE:
resource research Public Programs
This is the final annual report for the AISL project: Collaborative Research: Developing STEM self-efficacy and science identities through authentic astrophysics research in online and face-to-face environments (STEM-ID). Impact Statement: At 100 meters in diameter, the Green Bank Telescope (GBT) in Pocahontas County, West Virginia, is the largest radio telescope in the United States. It is also one of the most sensitive telescopes in the world for searching for radio signals from exotic stars called pulsars. Pulsars are roughly the size of a city but weigh more than the Sun, making them
DATE:
resource evaluation Public Programs
During the school year of 2017-2018, Fairchild Tropical Botanic Garden (Fairchild) implemented the second year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and assessing project outcomes using data collected between September 2017 and May 2018. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS: Catherine Raymond Marion Litzinger Carl Lewis Amy Padolf
resource project Public Programs
The Growing Beyond Earth Project (GBE) is a STEM education program designed to have middle and high school students conduct botany experiments, designed in partnership with NASA researchers at Kennedy Space Center, that support NASA research on growing plants in space. GBE was initiated by Fairchild Tropical Botanic Garden in collaboration with NASA's Exploration Research and Technology Programs and Miami-Dade County Public School District. Project goals are to: (1) improve STEM instruction in schools by providing authentic research experiments that have real world implications through curricular activities that meet STEM education needs, comprehensive teacher training, summer-long internships and the development of replicable training modules; (2) increase and sustain youth and public engagement in STEM related fields; (3) better serve groups historically underrepresented in STEM fields; and (4) support current and future NASA research by identifying and testing new plant varieties for future growth in space. During the 2016-17 academic year, 131 school classrooms participated in the program. To date, students have tested 91 varieties of edible plants and produced more than 100,000 data points that have been shared with the researchers at KSC.
DATE: -
TEAM MEMBERS: Carl Lewis Amy Padolf
resource evaluation Public Programs
During the school year of 2016-2017, Fairchild Tropical Botanic Garden (Fairchild) implemented the first year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and exploring project outcomes using data collected between September 2016 and May 2017. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS: Catherine Raymond Amy Rubinson Carl Lewis Marion Litzinger Amy Padolf
resource research Public Programs
The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by professional astronomers versus amateur astronomers. Survey participants indicated that they believe that the astronomer partner positively influenced students' attitudes toward science and that amateurs may be especially effective at the elementary
DATE:
TEAM MEMBERS: Michael Gibbs Margaret Berendsen
resource project Public Programs
To quantify how much of the night sky has been lost to light pollution, students in grades 3-8 compare their backyard view of Orion to six star charts of the constellation with varying limiting magnitudes. Using thousands of observations from across the local community, teams of students from individual schools plot the collective results by constructing a 3D model out of LEGO blocks. Beforehand, all teachers integrate some aspect of the topic in their regular classroom instruction. The website offers supporting lessons, resources, and ideas for teachers and families alike.
DATE: -
TEAM MEMBERS: Penn-Harris-Madison School Corporation
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer