Skip to main content

Community Repository Search Results

resource project Exhibitions
The Mississippi Children’s Museum will complete WonderBox, a 1,500 square foot-STEAM exhibit in the museum’s existing arts gallery. WonderBox will address a critical need in Mississippi for increased education in STEAM subjects during elementary grades—particularly for those individuals who are underserved and lack adequate access to resources. Through the proposed exhibit area and programming, children from all backgrounds will explore topics such as design, art, coding, robotics, engineering, and circuitry. It will encourage active exploration and inquiry-based learning while facilitating parent/caregiver interaction with hands-on activities and guided conversations that will inspire children to design, create, and invent. Additionally, the gallery will offer children opportunities to interact with concepts from industries that are vital to Mississippi’s economy in an environment that encourages innovation and creative problem solving.
DATE: -
TEAM MEMBERS: Susan Easom Garrard
resource project Media and Technology
Implementation of a permanent exhibition, on-line content, educational materials, and public programs exploring the history and cultural impact of video games.

Through the design, fabrication, and implementation of a 24,000-sq. ft. permanent, long-term gallery—tentatively entitled Digital Worlds—The Strong National Museum of Play will explore and share the history, influence, and experience of video games as they relate to culture, storytelling, human development, and the broader evolution of play. This gallery, the centerpiece of a transformational museum expansion, will include complementary and cohesive interactive exhibit spaces that showcase the history of video games through: (1) display of rare and unique historical artifacts; (2) use of multiple media formats that allow guests to discover the history of video games and their impact on society and culture; and (3) inclusion of one-of-a-kind interactive experiences that bring the history, art, and narrative structures of video games to life.
DATE: -
TEAM MEMBERS: Jon-Paul Dyson
resource evaluation Media and Technology
Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
DATE:
resource project Public Programs
Historic art objects provide a collection of materials that have been naturally aged for decades or even centuries. In addition to the intrinsic archival value of these materials, they are also models for understanding property degradation over long periods of time. This project aims to develop computational and experimental tools needed to understand how these changes take place. To accomplish this task a research network has been established between Northwestern University and leaders in cultural heritage science from the Rijksmuseum and the University of Amsterdam in the Netherlands, the National Research Council in Italy, and the Synchrotron Soleil in France. This new infrastructure promises to deliver a significant enhancement of research and education resources (networks, partnership and increased access to facilities and instrumentation) to a diverse group of users. The art objects central to the project provide a series of well-defined case studies for investigating complex materials systems that are both applicable to materials education and push the limits of the existing analytical tools, thus inspiring instrumental innovations across broad sectors of the physical sciences. Further development of these tools will enable art conservators to more effectively make informed decisions about treatments of works of art, and to understand long-term materials degradation more generally. The project will also deliver a significant enhancement of research and education infrastructure by a diverse group of users and will provide meaningful, international research experience to 50 participants, with a strong emphasis on scientists at the beginning of their careers. In addition, the connections between science and art will illustrate the creative aspects of both disciplines to a very broad audience, attracting a more representative cross section of people into science.
DATE:
TEAM MEMBERS: Kenneth Shull Francesca Casadio Oliver Cossairt Aggelos Katsaggelos Marc Walton
resource research Exhibitions
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS: Ibrahim Yeter Anastasia Marie Rynearson Hoda Ehsan Annwesa Dasgupta Barbara Fagundes Muhsin Meneske Monica Cardella
resource project Media and Technology
Becoming computationally literate is increasingly crucial to everyday life and to expanding workforce capacity. Research suggests that computational literacy--knowing what, when, how, and why to use the ideas of computer science, in combination with the capacity to view problems and potential solutions through the lens of computational structures and procedures--can be supported through digital game play. This project aims to develop a social and creative exhibit game that foregrounds aspects of computer science, specifically artificial intelligence (AI) and computer programming, in ways that enable youth to explore, construct, and share computational complex systems content with one another and other museum visitors. To play the game, pairs of youth visitors will use code cards to program the behavior of AI animals in a virtual forest. As they do so, youth will engage with computational literacy practices, such as basic computer programming, describing their computational ideas, and doing computational problem solving with their friends. Their activity will be projected on a large screen as a strategy for enabling youth to test, rehearse, and communicate their computational ideas and to also interest other visitors into computational problem solving.

Using multi-perspective and iterative design-based research, university learning scientists, museum practitioners, and game developers will pursue research questions around how science museums can better engage youth who are traditionally underrepresented in computer science in complex computational practices. Data sources will include interactive-log data, observations of visitor interactions with the game, visitor interviews, and visitor surveys. A multimodal and mixed methods approach that searches for convergences between qualitative analysis, quantitative analysis, and learning analytics will be used to generate research findings. Changes in computational literacy will be assessed by evaluating what problems visitors choose to solve with programming, how they frame those problems, and their selections from among possible solutions, what they program, how they program, and how they describe programming ideas. The results of this project will include: 1) a social, interactive gameplay experience that supports the development of computational literacy; 2) design principles for game-based exhibits that facilitate development of computational literacy; and 3) new knowledge of variations in design and gameplay across diverse gameplay users, including those from underrepresented groups in computer science. It is anticipated that 1,000 museum youth visitors will directly participate in the study.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Matthew Berland Leilah Lyons Matthew Cannady
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman