Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
DATE:
TEAM MEMBERS: Christine Roman Elisa Israel
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource research Public Programs
The Science Museum of Minnesota (SMM) leverages a professional educator team (“instructors”) comprised of about two dozen individuals who facilitate both formal and informal educational programming in the museum, in K–12 classrooms, and at community-based sites. The experienced instructors of SMM’s Lifelong Learning Group bring innovative programs to both students and their teachers. Recognizing that long-term experiences can have a profound impact on students and teachers, SMM works to develop multiyear relationships based on collaboration. This article focuses primarily on SMM’s well
DATE:
TEAM MEMBERS: Lauren Causey Shannon McManimon Emily Poster
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.

Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.

Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.

This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
DATE: -
TEAM MEMBERS: David Uttal Kemi Jona
resource project Media and Technology
This is a proposal for a 3 year, $1,297,456 project to be conducted as collaboration among 5 higher education institutions and one school system across the country, with St. Joseph's University in Philadelphia, PA serving as the lead institution (other collaborators are from Colorado School of Mines, Ithaca College, Santa Clara University, Duke University, and Virginia Beach School System). The primary goal is to attract and retain students in computer science, especially women and underrepresented minorities (including two EPSCoR states). To this end, the project will use Alice, a software program that utilizes 3-D visualization methods, as a medium to create a high-level of interest in computer graphics, animation, and storytelling among high school students, hence to build understanding of object-based programming. Such an IT focus on media and animation is aligned with national computer science standards. The project will build a network of college and high school faculty, who will offer workshops and provide continuing support during the academic year. In each site, pairs of teachers from each participating school (total = 90) will learn with university faculty via a 3-week summer program in which an introduction to using Alice for teaching will be followed by teacher development of materials for students that will then be used to teach high school students. An experimental start at one site will be followed by implementation at four additional sites and culminated with revised implementation at the sixth site (1-4-1 design).
DATE: -
TEAM MEMBERS: Susan Rodger
resource project Media and Technology
The scientific community is challenged by the need to reach out to students who have traditionally not been attracted to engineering and the sciences. This project would provide a link between the University of Michigan and the teachers and students of secondary education in the State of Michigan with an initial emphasis on southeast Michigan, through the creation of a range of computer services which will provide interactive access to current weather and climate change information. Taking advantage of a unique computer network capacity within the State of Michigan named MichNet which provides local phone ports in virtually every major city in the state, and the resources available to the university community via the University Corporation for Atmospheric Research (UCAR) UNIDATA program, this project would provide secondary schools with access to a state-of-the-art interactive weather information system. The real-time data available via the system, supplemented by interactive computer modules designed in collaboration with earth science teachers, will provide animated background information on a range of climate and weather related topics. While the principal objective of this project will be to provide educationally stimulating interactive computer systems and electronic weather and climate modules for application in inner city Detroit and its environs, the unique nature of the available computer networking will allow virtually every school system in the state to have access. Subsequently successful completion of this project could eventually make the same systems available to other cities and states.
DATE: -
TEAM MEMBERS: Perry Samson
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer
resource project Professional Development, Conferences, and Networks
AccessComputing is a NSF-funded Broadening Participation in Computing alliance with the goal of increasing the participation and success of people with disabilities in computing fields. AccessComputing is in its 10th year of funding. It supports students with disabilities from across the country in reaching critical junctures toward college and careers by providing advice, resources, mentoring opportunities, professional contacts, and funding for tutoring, internships, and computing conferences. For educators and employers, it offers institutes and workshops to build awareness of universal design and accommodation strategies, and to aid in recruiting and supporting students with disabilities through the development of inclusive programs and education on promising practices.
DATE: -
TEAM MEMBERS: Richard Ladner Sheryl Burgstahler
resource project Professional Development, Conferences, and Networks
The University of Maryland's project, Curate Cloud: Building Digital Curation Excellence through Professional Education, Cloud Computing and Community Outreach, will provide cultural heritage institutions with tools and resources to help them evaluate, select, and implement digital curation solutions. The project focuses on underrepresented institutions, developing and deploying an innovative research and learning environment that will lower financial, technical, and infrastructure barriers. Twenty mid-career professionals will enroll in a new certificate program to gain theoretical and practical knowledge about digital curation and cloud computing and will design and implement their own cloud-based curated collections. Curate Cloud will help transform the field by developing an open-source research and educational platform and by removing barriers to access for curation tools and resources.
DATE: -
TEAM MEMBERS: Jimmy Lin
resource project Professional Development, Conferences, and Networks
Curating Research Assets and Data using Lifecycle Education (CRADLE): Data Management Education Tools for Librarians, Archivists, & Content Creators is a collaboration among the University of North Carolina (UNC) at Chapel Hill's School of Information & Library Science, the Odum Institute for Research in Social Science, and the University Libraries. It is focused on helping data librarians, archivists, and information and library science students learn about data management and on providing instruction to data creators in their institutions. The project will result in free online courses on data management for researchers and information professionals to be offered through a "free university" platform as well as face-to-face workshops involving UNC staff, faculty, and students. Support is provided for two CRADLE fellows who will learn about and contribute to the development of this work on effective and efficient data lifecycle management.
DATE: -
TEAM MEMBERS: Helen Tibbo
resource project Media and Technology
This project will study two emerging and innovative technologies: interactive, dynamic simulations and touch-based tablet devices. The use of touch-based tablet technology (e.g., iPads) in the classroom is rapidly increasing, though little research has been done to understand effective implementation for learning science. Interactive simulations are now in use across K-16 levels of education, though what impact tablet devices have on the effective implementation of science simulations is not yet known. This project will explore this new frontier in education, over a range of contexts, providing new insight into effective interactive simulation design, classroom facilitation techniques, and the effects of tablet-based simulation use on underrepresented populations in STEM courses. Together, Dr. Emily Moore (PhET, UCB), a leader in interactive simulation design and classroom use, and Dr. Roy Tasker of the University of Western Sydney (UWS), a leader in chemistry education research, science visualizations, and teaching with technology, will research on the new technology frontier in science education - laying the groundwork for future investigations of foundational questions in technology use for learning science. This work has great potential to transform the future of science learning, making it both more engaging and more effective for diverse populations. The research findings will immediately impact 1) the design of new and existing PhET simulations - reaching millions of students and teachers using PhET simulations worldwide - and 2) the development of best practices guidelines for teachers using tablet technology to increase student learning, engagement, and participation in STEM disciplines.
DATE: -
TEAM MEMBERS: Emily Moore