Skip to main content

Community Repository Search Results

resource project Media and Technology
Three-dimensional digital models are increasingly prevalent in preserving tangible and intangible aspects of Indigenous material heritage. Yet, there are no comprehensive, clearly laid-out best practices that can guide researchers, Indigenous communities, and museum personnel in designing ethically sound and socially engaged 3D heritage preservation projects. The use of 3D technologies for heritage preservation and providing public access to digital 3D collections is well-established in the European context. While there have been several robust efforts on digitizing European national heritage, in the U.S. context, the focus often involves work with Indigenous heritage, instantly placing 3D projects into a post-colonial research paradigm with a complex set of ethical ramifications. This research examines emerging thoughts from the European context and connects them with best practices in digital Indigenous data management to identify practices that contribute to cultures of academic integrity that are inclusive of all stakeholder voices. This work fosters ethical cultures of STEM through the development of a comprehensive Responsible Conduct of Research guiding document that can be adapted to address culture-specific Indigenous perspectives as well as project-specific challenges in future 3D heritage preservation endeavors.

Project goals are accomplished through workshops and virtual collaborations that bring together researchers, Indigenous community members, and heritage preservation professionals with previous experience in the responsible management, protection, and sharing of Indigenous digital data and the use of 3D technology for heritage preservation. The collaboratively produced guidelines outline ethical considerations that can be used in developing: 1) partnerships with origin/descendant communities, 2) institution- and collection-specific museum policies on using 3D technology, 3) Tribal policies for culturally appropriate use of 3D technologies, and 4) training material and curriculum that integrates with other research compliance regulations pertaining to heritage preservation. The project explores the questions that have emerged through previous experiences using 3D technologies to preserve Indigenous ancestral heritage. These questions include the factors contributing to developing ethically sound 3D heritage preservation projects; the practices useful in 3D projects to foster a culture of integrity that equally engages academic and Indigenous perspectives; consideration for what constitutes Responsible Conduct of Research in using 3D technologies to preserve Indigenous cultural heritage; and addressing practice-based questions that contribute to understanding ethical challenges in digitally preserving and presenting Indigenous heritage. The project situates 3D modeling and heritage representation as part of the larger discourse on decolonizing core methodologies in museum management and anthropological collection practices. Results from this work can be adapted to training future researchers and digital heritage management professionals and creating meaningful partnerships in heritage documentation. This research cultivates cultures of academic integrity by informing heritage management policy on the critical importance of heritage ethics for the creation and management of 3D digitization projects involving Indigenous collections. This award is funded by the Directorate of Geosciences and the Directorate of Education and Human Resources.
DATE: -
TEAM MEMBERS: Medea Csoba-DeHass Lori Collins
resource project Media and Technology
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.

In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE: -
TEAM MEMBERS: David Shaffer Kristen Scopinich Holly Gibbs Jeffrey Linderoth
resource project Websites, Mobile Apps, and Online Media
SETAC is funded by the Lifelong Learning Programme of the European Union and emerges out of the need to undertake specific action for the improvement of science education. It regards science education as among the fundamental tools for developing active citizens in the knowledge society. SETAC draws on the cooperation between formal and informal learning institutions, aiming to enhance school science education and active citizenship looking further into the role of science education as a lifelong tool in the knowledge society. On the day of the project’s conclusion, 31 October 2010, after two years of work SETAC contributes the following products and results to the field: 1. “Quality Science Education: Where do we stand? Guidelines for practice from a European experience” This is the concluding manifesto that presents the results of the SETAC work in the form of recommendations for practitioners working in formal and informal science learning institutions; 2. “Teaching and Learning Scientific Literacy and Citizenship 
in Partnership with Schools and Science Museums” This paper constitutes the theoretical framework of the project and innovative ways of using museums for science education and develop new modes of linking formal and informal learning environments; 3. Tools for teaching and learning in science: misconceptions, authentic questions, motivation. Three specific studies, leading to three specific reports, have been conducted in the context of the project, looking in particular into notions with an important role in science teaching and learning. These are on: Children’s misconceptions; Authentic questions as tool when working in science education; Students’ attitudes and motivation as factors influencing their achievement and participation in science and science-related issues; 4. Activities with schools: SETAC developed a series of prototype education activities which were tested with schools in each country. 
Among the activities developed between the partners, two have been chosen and are available on-line for practitioners to use and to adapt in their own context. These are: The Energy role game, a role game on Energy invites students to act in different roles, those of the stakeholders of an imaginary community, called to debate and decide upon a certain common problem; MyTest www.museoscienza.org/myTest, which aims to encourage students to engage in researching, reflecting and communicating science-oriented topics; 5. European in-service training course for primary and secondary school teachers across Europe. The training course is designed in such a way as to engage participants in debate and exploration of issues related to science education and active citizenship. The course is open to school teachers, headteachers and teacher trainers from all EU-member and associate countries. Professionals interested can apply for a EU Comenius grant. All the products of the project as well as information about the training course are available at the project website, some of them in more than one languages: www.museoscienza.org/setac
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource project Media and Technology
This full-scale development project would use a multi-platform approach (TV, Field School, and Web site) to engage public audiences and underserved youth in archaeology research and discovery. The project will advance knowledge and practice in the field of ISE by establishing the utility of archaeology as an entry point to multiple STEM fields showing how it answers important questions about human origins-culture, history, and the natural environment. The target audience includes a broad demographic of viewers who will watch the PBS broadcasts. The other key audience is underserved youth who will participate in the archeology digs and be featured in the national broadcast. They will engage other underserved youth who will have the opportunity to participate in the interactive online virtual field school. Primary organizational partners include the Crow Canyon Archaeology Center in Colorado and other archeology organizations at the 4 field sites. Deliverables include four hours of PBS programming filmed at four archaeological sites telling the stories of diverse cultures (Native American, African American, Hispanic); field schools designed for underrepresented youth both onsite and online; blogs, online discussions, and user-generated videos. The evaluation will determine the impact of the television series, online content, and the on-site Field School on audiences' understanding of, interest in, and interactions around STEM topics within the context of archaeology. Formative evaluation will provide input and help refine the television programs, web site, and field school. The summative evaluation will use a variety of methods and artifacts to determine the degree to which the process of the TV series, web site, and Field School was successful. The television programs are expected to reach 13 million viewers via broadcast, 300,000 via streaming video and 50,000 unique web site visitors. The lessons learned from this project will be disseminated to other media and ISE organizations.
DATE: -
TEAM MEMBERS: David Davis Noel Broadbent Margaret Watters Jennifer Borland