Skip to main content

Community Repository Search Results

resource project Public Programs
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.

The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Jill Castek Leslie Sult Jennifer Nichols Kevin Bonine Blaine Smith
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource research Public Programs
Meaningful Making 2 is a second volume of projects and strategies from the Columbia University FabLearn Fellows. This diverse group of leading K–12 educators teach in Fab Labs, makerspaces, classrooms, libraries, community centers, and museums—all with the goal of making learning more meaningful for every child. A learning revolution is in the making around the world. Enthusiastic educators are using the new tools and technology of the maker movement to give children authentic learning experiences beyond textbooks and tests. The FabLearn Fellows work at the forefront of this movement in all
DATE:
TEAM MEMBERS: Paulo Blikstein Sylvia Libow Martinez Heather Allen Pang Kevin Jarrett
resource research Public Programs
This book contains project ideas, articles, and best practices from educators at the forefront of making and hands-on education. The Stanford University FabLearn Fellows are a group of K­-12 educators teaching in Fab Labs, makerspaces, classrooms, libraries, community centers, and museums—all with the goal of making learning more meaningful. In this book, the FabLearn Fellows share inspirational ideas from their learning spaces, assessment strategies and recommended projects across a broad range of age levels. Illustrated with color photos of real student work, the Fellows take you on a
DATE:
TEAM MEMBERS: Paulo Blikstein Sylvia Libow Martinez Heather Allen Pang
resource project Public Programs
This project by California State University San Marcos and their collaborators will expand and continue to innovate on a pilot Mobile Making program with the goal of developing a sustainable, regional model for serving underserved, middle-school aged youth in twelve after-school programs in the San Diego region. Evaluation of the current Mobile Making program has documented positive impacts on participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life, and led to a model for engaging underserved youth in Making. The work will focus on implementing the program model sustainably at greater capacity by increasing the number of undergraduate activity leaders, after-school sites, and level of community engagement. The expanded Mobile Making program is expected to engage ~1800 middle school youth at 12 local school sites, with activities facilitated by ~1020 undergraduate CSU-SM STEM majors. The sites are in ethnically diverse and economically disadvantaged neighborhoods, with as many as 90% of students at some sites qualifying for free or reduced price lunch. The undergraduate facilitators are drawn from CSU-SM's diverse student body, which includes 44% underrepresented minorities. Outcomes are expected to include increases in the youth participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life. Positive impacts on the undergraduate facilitators will include broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. The program is designed to achieve sustainability through innovative means such as involving undergraduate facilitators via Community Service Learning (rather than paid positions), and increased community engagement via development and support of a community of practice including local after-school providers, teachers, Makers, and University members. Evaluation of the program outcomes and lessons learned are expected to result in a comprehensive model for a sustainable, university-based after-school Making program with regional impact in underserved communities. Dissemination to other regions will be leveraged via CSU-SM's membership in the California State University (CSU) system, yielding a potential statewide impact. The support of the CSU Chancellor's Office and input from a CSU implementation group will ensure the applicability of the model to other regional university settings, identify common structural barriers and solutions, and increase the probability of secondary implementations. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Edward Price Charles De Leone
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. How can we come to terms with the complex social impact of new cutting-edge fields like synthetic biology, robotics, genetics and machine learning? In order to manage these transformative changes, people not only need to understand science and technology, but also to actively participate in shaping a world where our ability to control the building blocks of life and cognition is vastly expanded. The Transmedia Museum will use the interactive, engaging nature of
DATE:
TEAM MEMBERS: Ed Finn Steve Gano Ruth Wylie David Guston Micah Lande Rae Ostman
resource research Public Programs
New forms of co-working spaces and community labs, such as Hackerspaces and Fablabs, but also open science and citizen science initiatives, by involving new actors often described as makers, tinkerers, and hackers enable innovation and research outside the walls of academia and industry. These alternative and global innovation networks are test beds for studying new forms of public engagement and participation in emergent scientific fields, such as nanotechnology. The article shows how these grassroots and Do-It-Yourself (DIY) or Do-It-With- Others (DIWO) research subcultures connect politics
DATE:
TEAM MEMBERS: Denisa Kera
resource research Media and Technology
In the last decade, social studies of nanotechnology have been characterized by a specific focus on the role of communication and cultural representations. Scholars have documented a proliferation of the forms through which this research area has been represented, communicated and debated within different social contexts. This Jcom section concentrates on the proliferation of cultural spaces where nanotechnologies are articulated and shaped in society. The intent is that of showing how these different cultural spaces — with their specific features and implications — raise multiple issues and
DATE:
TEAM MEMBERS: Paolo Magaudda