Skip to main content

Community Repository Search Results

resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Professional Development, Conferences, and Networks
The Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado, Boulder, in collaboration with EcoArts Connections and the National Center for Atmospheric Research (NCAR), is conducting an initial planning workshop and related activities which will be the first of three stepwise convenings over the next two or three years to gather experts from the fields of natural and social sciences, arts, energy/water conservation, and related disciplines. The initiative will work to establish an operational strategy for knowledge sharing across collaborating entities, networks, and associations. The major goal is to strengthen collaboration of professionals nationally to better conceive, conduct, and evaluate projects for the public that work at the intersection of science, arts, and sustainability (environmental, social and economic). Many communities around the country have been seeking to address increasingly pressing problems about their ability to sustain the vitality, health and resilience of their regions and the lives of their residents. Bringing inter-disciplinary knowledge and skills to bear on these issues is considered to be critical. Between 24 - 32 professionals will be involved. The workshop will be conducted simultaneously in Boulder, CO and at Princeton University, with communication between the two sites. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Intended outcomes from this first workshop include: 1) identification and preliminary mapping of successful evidence-based best practices in science-arts-sustainability collaborations 2) a strategic vision for interdisciplinary collaboration across networks; and 3) an initial framework for the dissemination of findings that can reach across disciplines. Outputs include 1) preparation of a pre-workshop briefing booklet based in part on interviews of professionals in the various disciplines; 2) a post-workshop white paper; 3) a network of experts from the participating disciplinary fields; and 4) an agenda for the second (larger) convening. The trans-disciplinary strategy promises to more efficiently and effectively bring STEM disciplines to a wider public in collaboration with the arts through sustainability topics that are place-based, targeted to, and meaningful for specific audiences.
DATE: -
TEAM MEMBERS: James White Marda Kirn