Skip to main content

Community Repository Search Results

resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Todd Boyette Janice Anderson Jill Hamm Crystal Harden
resource evaluation Public Programs
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
DATE:
TEAM MEMBERS: Iridescent
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource research Exhibitions
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. STAR Library Education Network (STAR_Net) is a national program led by the Space Science Institute’s National Center for Interactive Learning (NCIL). STAR stands for Science-Technology Activities and Resources (www.starnetlibraries.org). Core partners include the American Library Association, Lunar and Planetary Institute, and the National Girls Collaborative Project. Other partners include the National Academy of Engineering, Engineers Without Borders-USA, IEEE-USA, the National Renewable Energy Lab, American Geophysical
DATE:
TEAM MEMBERS: SPACE SCIENCE INSTITUTE/National Center for Interactive Learning Paul Dusenbery
resource project Media and Technology
The Expanding Children’s Interest through Experiential Learning (EXCITE) Project will target K-8th students in expanded learning programs to increase ongoing NASA STEM informal education opportunities for organizations that serve primarily underrepresented and underserved student populations. The AERO Institute will leverage existing collaborations to build capacity of participating organizations in NASA inspired STEM activities. Major partners include Navajo Nation in Arizona, the Beyond the Bell branch of the Los Angeles Unified School District, and the Region 8 of the California After School Program housed in the Ventura County of Education. In addition, the EXCITE Learning Project plans to work with libraries to broaden the scope and impact of NASA’s Education materials and opportunities within underrepresented and underserved local communities. AERO Education specialists will train educators and librarians using the Train-the-Trainer approach. The training sessions will be filmed and made available online via the AERO website and its network on YouTube so that educators and librarians can refresh their understanding as needed.
DATE: -
TEAM MEMBERS: Susan Miller