Skip to main content

Community Repository Search Results

resource project Public Programs
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project from the University of New Hampshire focuses on a "living bridge", which exemplifies the future of smart, sustainable, user-centered transportation infrastructure. Bridges deliver such a fundamental service to society that they are often taken for granted. Typically, bridges only stir the public's interest when they must unexpectedly be replaced at great cost, or, worse, fail. The Living Bridge project will create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy, by transforming the landmark Memorial Bridge--a vertical lift bridge over the tidal Piscataqua River, with pedestrian access connecting Portsmouth, New Hampshire to Kittery, Maine--into a living laboratory for researchers, engineers, scientists, and the community at large. The Living Bridge will engage innovators in sensor and renewable energy technology by creating an incubator platform on a working bridge, from which researchers can field test and evaluate the impact and effectiveness of emerging technologies. The Living Bridge will also serve as a community platform to educate citizens about innovations occurring at the site and in the region, and about how incorporating renewable energy into bridge design can lead to a sustainable transportation infrastructure with impact far beyond the region. Sustainable, smart bridges are key elements in developing a successful infrastructure system. To advance the state of smart service systems and clean energy conversion, this project team will design and deploy a structural and environmental monitoring system that provides information for bridge condition assessment, traffic management, and environmental stewardship; advances renewable energy technology application; and excites the general public about bridge innovations. This PFI:BIC project is enabled through partnerships between academic researchers with expertise in structural, mechanical and ocean engineering, sensing technology and social science; small businesses with expertise in instrumentation, data acquisition, tidal energy conversion; and state agencies with bridge design expertise. The Living Bridge technical areas are structural health monitoring, tidal energy conversion with fluid-structure interaction measurements, estuarine environmental monitoring, and outreach communication. Sensors will be used to calibrate a three-dimensional analytical structural finite element model of the bridge. The predicted structural response from this model will assess the measured structural response of the bridge as acceptable or not. Instruments installed on the turbine deployment platform will measure the spatio-temporal structure of the turbulent inflow and modified wake flow downstream of the turbine. Resulting data will include turbine performance and loads for use in fluid-structure interaction models. Deployed environmental sensors will measure estuarine water quality; wildlife deterrent sensors will deter fish from the turbine. Hydrophones and video cameras will be used before and during turbine deployment to monitor environmental changes due to turbine presence. Outreach efforts will make bridge data, history, and information about new systems accessible and understandable to the public and K-12 educators, facilitated by an information kiosk installed at the bridge. Public awareness will be assessed with survey methods used in the N.H. Granite State Poll. The lead institution is the University of New Hampshire (UNH) with its departments of Civil Engineering, Mechanical Engineering, and Sociology, and the Center for Ocean Engineering. Primary industrial partners are a large business, MacArtney Underwater Technology Group, Inc. (Houston, TX) and two small businesses Lite Enterprises, Inc. (Nashua, NH) and Eccosolutions, LLC (New Paltz, NY.) Broader context partners are New Hampshire Department of Transportation, NH Fish & Game Department, NH Port Authority, NH Coastal Program, City of Portsmouth (NH), Sustainable Portsmouth (nonprofit), Maine Department of Transportation; U.S. Coast Guard, Archer/Western (Canton, MA, large business), Parsons-Brinkerhoff (Manchester, NH, large business), UNH Tech Camp, UNH Infrastructure and Climate Network, UNH Leitzel Center for Mathematics, Science and Engineering Education, and Massachusetts Institute of Technology's Changing Places (a joint Architecture and Media Laboratory Consortium, in Cambridge, MA).
DATE: -
TEAM MEMBERS: Erin Bell Tat Fu Martin Wosnik Kenneth Baldwin Lawrence Hamilton
resource project Exhibitions
The St. Louis Science Center is a major metropolitan science museum serving a population of 2.3 million people. One year ago they moved into a new facility at a new location and attendance at the museum has tripled, reaching 600,00 visitors this past year. The center will develop a "Science Playground" in order to teach basic science principles and process through a series of 45 outdoor participatory exhibitions around the major areas of motion, energy, light, sound and the natural environment. The physics of motion will be explored through exhibits such as a friction slide, lunar gravity swing, double-axis human pendulum, etc. Energy exhibits will provide experiences with watermills and water power, fulcrum leverage and solar energy. Light exploration includes a solar column, prisms and rainbows, soundwheel and whisper discs. A weather station will have a rain gauge, anemometer, a variety of barometers, etc. This contemporary playground concept was developed as a response to limitations of indoor facilities and to extend use of outdoor space in a creative manner. The exhibit will be a model for extending science learning opportunities for schools, parks, other science museums and similar institutions. The center surveyed 31 science centers, 82 parks and 85 school districts to gauge interest in use of science playground exhibits, and found a clear interest in this type of project by all sectors surveyed. Exhibit designs will be published and furnished at cost to any facility wishing to replicate all or any part of the exhibition.
DATE: -
TEAM MEMBERS: Jeffrey Bonner
resource project Exhibitions
With this planning grant, the staff of the Bucks County Historical Society will work with a group of museum professionals and community representatives to develop plans for interactive exhibits that have science and math content that will be placed in an outdoor park. They want visitors to learn about the science, history, and aesthetics of early American hand tools and technology by experiencing various hands-on activities. The planning activities will include meetings of the planning committees, front-end evaluation, and the testing of some prototype activities. At the end of the twelve month planing period they will have 1) a better understanding of their audience and their knowledge of the science and technology to be presented in the exhibit, 2) a schematic design for the activities to be included in the park, 3) plans for complementary educational activities, and 4) results of prototype testing of selected activities.
DATE: -
TEAM MEMBERS: Douglas Dolan
resource project Exhibitions
The North Carolina Museum of Life and Science will develop two areas in a new 70 acre outdoor exhibit "BioQuest Woods: Linking Animals and Plans with Interactive Exhibits". This concept is to pair live animals and plants in their natural setting with science center-style interactive exhibits to communicate key ideas in biology and physics. Support will go to sixteen interactive stations in two four-acre theme areas "Catch the Wind" and "Down to Earth". "Catch the Wind" will assist visitors in the exploration air movement and learning about how plants and animals use air in specialized ways. For example, visitors will experiment with air thermals while observing the behavior of birds of prey and will learn how prairie dogs exploit the venturi effect to ventilate their burrows. In the "Down to Earth" thematic area, visitors, simulate the activities of field biologists, will track bears equipped with radio collars, examine living invertebrates, among other activities. Scientific instruments, including microscopes, in kiosks will aid on-the-scene study of live animals and plans. "BioQuest Woods" will help visitors, teachers and students gain the realistic experience of scientific inquiry in a natural setting. Education programming will highlight curriculum linkages and fulfills the goals of North Carolina's new science curriculum. It directly addresses the State's competency-based goals requiring understanding of natural systems and the interrelations of the basic sciences. Pre and post-visit materials will be developed along with teacher guides and enhancement activities. This project is being developed with the cooperation of the Austin Nature Center, the National Zoo, and the Indianapolis Zoo.
DATE: -
TEAM MEMBERS: Roy Griffiths Thomas Krakauer
resource project Exhibitions
This project launches the creation of a new class of playground apparatus based on an emerging understanding of how students learn mathematics and science concepts. The equipment will be highly interactive and instrumented, providing opportunities for thoughtful, planned actions that children can evaluate with the aid of instrumentation. The design principles used are applicable to many mathematics and science topics, but this initial demonstration is restricted to creating units which embody some important concepts from classical mechanics. We will create, test, evaluate, and begin the dissemination of units incorporating timing, motion, and force sensor electronics designed to give children real- time, symbolic feedback to reflect their experiences. The first nine months will be devoted to the apparatus design, building, testing, safety evaluation, and formative research. We will install apparatus in three highly varied sites to evaluate the design. In a second phase, improved units will be built for one site and detailed research on student learning undertaken. If we observe the hypothesized learning, the approach we use in mechanics will have broad generalizability. This work could lead to interesting and highly educational apparatus addressing other science fields and useful in a broad range of informal learning environments.
DATE: -
TEAM MEMBERS: John King Robert Tinker