Skip to main content

Community Repository Search Results

resource project Public Programs
The Rochester Institute of Technology's National Technical Institute for the Deaf (NTID) and Center for Computational Relativity and Gravitation (CCRG) will collaborate on a CRPA project designed to develop a dance-based performance to educate deaf and hard of hearing students on astrophysics concepts. This project seeks to address the following goals: 1) provide all audience members with access to scientific information in an inherently engaging and stimulating manner; 2) facilitate the acquisition of scientific knowledge in all audience members, including deaf and hard-of-hearing individuals, with special reference to general information and basic concepts from the fields of gravitational physics and astrophysics; and 3) stimulate general interest in STEM fields within all audience members. An extensive team of physicists, arts faculty, computer scientists, performance experts, and evaluators have assembled to translate original research on gravity-based astrophysics, including collision events between black-holes and neutron-stars, entire galaxies, and the central black-hole engine that powers active galactic nuclei, into novel educational presentations. The original science to be presented was generated in part by the scientists at the Center for Computational Relativity and Gravitation. Project deliverables include live performances and a project website with educational materials and a virtual tour of the recorded performance. The live performances will include dance and computer generated visualizations of space phenomena, supplemented with discussion and interactive components to engage audiences both before and after the presentation. The mixed-method evaluation will provide insights into how the medium of dance can be used to engage audiences in STEM fields and increase the understanding of STEM content areas which have had little previous investigation, but may be highly relevant to the engagement of underserved audiences. Performances are planned for select sites in New York, Ohio, Connecticut, Rhode Island, Washington, DC, Pennsylvania and Maryland. It is estimated that the project will directly impact 7,000 individuals, approximately half of whom will be deaf or hard or hearing. Deaf and hard of hearing populations are greatly underserved in science education. This project is an effort to bridge that gap by providing creative models for communicating to the public on contemporary science concepts. Learning outcomes for the target audience include increasing awareness and interest in STEM, acquisition of information and basic concepts from the fields of gravitational physics and astrophysics, and enhancing awareness of relationships among science and the arts. Project activities will be disseminated through the website hosted by the Rochester Institute of Technology, as well as social networking sites including Facebook, Twitter, and Google+. The project will also be promoted through science festivals and media events.
DATE: -
TEAM MEMBERS: Manuela Campanelli Hans-Peter Bischof Jacob Noel-Storr
resource research Public Programs
This paper describes the potential benefits of incorporating art into physics education. Drawing and sculpture provide a way of understanding abstract concepts. The process may also allow educators to “humanize” physics and thus make it more accessible to historically marginalized groups.
DATE:
TEAM MEMBERS: Clea Matson
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource research Public Programs
Project STEAM aims to inspire art-interested girls to enter STEM careers through a series of activities, including summer academies that explore the biology and physics of color, science café-style presentations that feature the overlap between art and science, and the development of “kits” that can be used in informal and formal venues (Girl Scouts, science centers, and K-12 classrooms). Project research explores two questions: 1) How does an art-focused approach (STEAM) to teaching science support engagement in scientific practices such as experimentation, observation, and communication of
DATE:
TEAM MEMBERS: University of Alaska, Fairbanks Laura Conner
resource project Public Programs
Dynamic Patterns Theatre, an independent production company, is bringing a unique educational and entertainment experience to Central Illinois with upcoming performances of QED: A Play by Peter Parnell. Featuring a day in the life of Nobel Laureate Richard Feynman, the show interweaves strands from his professional biography, including the Manhattan project and the Challenger inquiry, and provides a window into many of his personal emotions and challenges, all the while offering several great discussions of physics ideas presented for a general audience. As the first production of a new "Science at the Theatre Series", QED (which stands for quantum electrodynamics, the physics model for which Feynman was awarded the Nobel Prize) will be incorporated with a unique informal educational opportunity along with the traditional theatrical experience for patrons to enjoy. Dynamic Patterns Theatre is collaborating with local physicists and teachers to host an informal forum highlighting aspects of Feynman's life and career and feature science topics discussed in the play. With an interactive format of "Ask a Physicist", patrons will be free to ask the panel any questions they might have about science for a unique opportunity to increase their appreciation for science and how the Universe works, if only just a bit. "My academic background is in physics, so I am personally excited to merge my theatre and science interests into a new cultural event that has not be attempted before in Central Illinois", said Matthew T. Dearing, co-producer of dynamic patterns theatre and director for QED. Richard Feynman is portrayed by Al Scheider, a long-time regional actor from Decatur who has performed in over sixty community theatre productions in thirty-seven years, and has directed theater for twelve years. The supporting role of Miriam Field, a young Caltech student, is played by Lynexia Dawn Chigges, who is an LPN with Memorial Physician Services, and has performed on stages from San Diego to Springfield, Illinois. QED: A Play performs for three weekends in three communities, with the opening on September 13, 14 at 8:00 pm in Springfield at the Hoogland Center for the Arts, September 20, 21 at 7:30 pm in Jacksonville at the Playhouse on the Square, and October 4, 5 at 8:00 pm in Decatur and the Madden Arts Center.
DATE:
TEAM MEMBERS: Matthew T. Dearing
resource research Exhibitions
This article highlights findings from a study conducted by researchers at Jacksonville State University that assessed group visitor behavior at four exhibits at the Anniston Museum of Natural History. Researchers studied if male and female adults behave differently at exhibits when they are with a child than when they are with another adult as well as whether or not adult behavior was consistent across different types of exhibits.
DATE:
TEAM MEMBERS: Stephen Bitgood Chifumi Kitazawa Andrea Cavender Karen Nettles
resource project Media and Technology
The Exploding Optic Incredible was an experiment in expanding the boundaries of art and music with science and technology. Ostensibly a multi-media rock concert as a fund raiser for Marshall Barnes' drug free creativity efforts, it took Andy Warhol's Exploding Plastic Inevitable concept of the 1960s into unchartered territory driven by Marshall's inspiration through discussions with Omni magazine's Dick Teresi and Pamela Weintraub and Gene Youngblood's book, Expanded Cinema. Marshall incorporated 1970s era slide and film projection light show effects, with dance lights, massive strobes, spotlights, and big screen video projection that showed customized and original video special effects while bands performed, and music videos in-between accompanied by lighting effects. The first multi-media rock concert of the 1990s, the January 18, 1990 event at the Newport Music Hall was also a test for the public's reaction to over stimulation through sight and sound, the results leading to exploration and ultimate creation of psychoactive entertainment technology later that year and the formation of new technological architectures for entertainment and learning that have yet to be presented but exist in design form.
DATE:
TEAM MEMBERS: Marshall Barnes
resource project Media and Technology
Saturday, March 6, 2010, Marshall Barnes did an experiment in blending art and science. At an art opening at the Ekklesia Gallery in Columbus, OH, he showcased, for the first time, the original video footage from an experiment in physics that conducted during New Year's eve of that year. The experiment was to determine what would happen if an attempt were made to produce a "wall of light" that would stand in free space and consist of a number particular properties produced by a proprietary technology that Marshall had developed. Small experiments had already been conducted that produced the visible effect of an area of free standing light produced by the reflection of a strobe from a wall. The New Year's Eve test was to see if a wall of light could be produced that would fill a space in a room and have a number of particular "interesting" attributes.
DATE:
TEAM MEMBERS: Marshall Barnes Ekklesia Gallery
resource project Media and Technology
Marshall Barnes was chosen by Larry Bock, founder of the USA Science and Engineering Festival as a late addition to the USASEF after viewing Marshall's impressive SuperScience for High School Physics activities for National Lab Day and his emphasis on advanced concept science and technologies. Marshall was given free booth space to set-up an exhibit that featured what is now being called "STEAM" or Science, Technology, Engineering, Art, Math and was fairly interactive. Marshall's booth emphasized his actual research that the visitors could take part in or analyze themselves. He had a VCR, TV, CD player, MacBookPro laptop and his own invention - the Visual Reduction Window. There were four elements to the exhibit. There was a TV monitor that showed a scene from a movie that you could view with 3D glasses for TV that Marshall invented that work even with one eye closed. At different times that same monitor would feature footage from an experiment that Marshall conducted to produce one of Nikola Tesla's ideas that Tesla never accomplished - a wall of light. This same footage could be analyzed by the visitors - frame by frame, on the Mac computer to see exactly how the principle of resonance produced the wall of light from the build-up of reflections off a physical wall created by strobe lights. Visitors could also listen to hyperdimensional music that Marshall produced that takes any kind of music to a new listening experience. Based on the concept that music is a coded language with cues and instructions that are cognitively recognizable when translated, Marshall invented techniques and technologies that allow such translations and brought examples for visitors to listen to. They included an upcoming radio show theme and the soundtrack to a documentary on the reality behind Fox TV's FRINGE. The music featured song elements that move around between the speakers and make you feel like the music is alive. The most dramatic of all was the Visual Reduction Window, again invented by Marshall, that made kids look transparent and at times, almost completely invisible. Based on his famous research into invisibility, which is documented at the Santa Maria Experiment exhibit in the Santa Maria Education Visitor's Center in Columbus, Ohio, the effect of real life transparency is stunning and Marshall, the world's leading expert on invisibility research was able to describe the physics behind what he was doing and its applications in the real world. His approach to invisibility is superior to those methods pursued by Duke University and others, trying to do the same with metamaterials, and is based on a completely different model of invisibility that he calls, Visual Density Reduction or VDR. Using VDR techniques, Marshall can make attack helicopters, small gun boats, tanks and many other things invisible, which is why he doesn't reveal the current level of his research, due to National Security reasons. Overall, the exhibit was a wild success and serves as a model for a traveling exhibit for informal science at malls, fairs, science centers, and other festivals.
DATE:
TEAM MEMBERS: Marhsall Barnes
resource project Exhibitions
This project was an early example of STEAM (Science, Technology, Engineering, Art, Math) and was produced for the 2004 BLD Studios art exhibition, Time Machines, in Columbus, OH. This project included a chair and a desk made of drawers, on top of which was a audio/video work station where visitors sat and interacted with the technology by using the headphones and listening to one tape deck for instructions and then listening to music on the other while watching the TV screen with special HyperSpeks(tm). There was also a panel of photos above the TV designed to simulate time travel. The instructions explained the purpose of the exhibit and how to use the TV to tune into various channels to pick-up a variety of video static on empty UHF frequencies. The music was designed to put the visitor into a certain frame of mind. It was futuristic sounding and created using DEMI sampling, a proprietary sampling technique also created by Marshall Barnes. The intent was to set the mood. Training Session was supposed to simulate training prospective transdimensional travelers in the cognitive exercises required to deal with the psychological rigors of time/parallel universe travel. The HyperSpeks(tm) allowed the visitors to search for various shapes in the TV static on a number of selcted channels which would resemble such cosmological constructs as black holes and wormholes. The static was live and not prerecorded and so the interaction on all levels was live and in real time. Visitors were to write their observations down on paper which was provided via a note pad and pen at the exhibit. In this way, a record of their experiences existed for subsequent visitors to review. The visitors were also told to view the photo panel, which consisted of pictures taken in 1977, but not developed until 2004. As a result, the pictures were somewhat faded and all tinted pink, however, when the visitors viewed them with the HyperSpeks(tm) they appeared not only normal color, but almost as if the scenes they depicted were views outside a window. Thus, the visitor was able to travel optically back in time and see the images the way they looked when they were originally photographed.
DATE:
TEAM MEMBERS: Marshall Barnes
resource project Public Programs
Children feed alphabet letters to a talking baby dragon, drive a New York City fire truck, paint on a six-foot art wall, and crawl through a challenge course in PlayWorks™ at the Children's Museum of Manhattan (CMOM) in New York. Manhattan’s largest public play and learning center for early childhood marries the skills that children need to succeed in kindergarten with fun stuff that kids love. The Institute of Museum and Library Services (IMLS) funded the project through a 2006 Museums for America grant to support the museum as a center of community engagement and lifelong learning. “PlayWorks™ is a joyful place for learning science, math, reading and other things. We incorporate fun and learning into the whole design to create a scaffold of learning. Families come to the museum to supplement preschool experiences,” said Andy S. Ackerman, CMOM’s executive director. The museum also offers parents, sitters, and other care-providers guidance on engaging their children with the exhibit. Based on the concept that children’s learning and personal growth is rooted in play, the 4,000-square-foot space is divided into five learning areas: Language, Math and Physics, Arts and Science, Imagination and Dramatic Play, and Practice Play (for infants and crawlers).
DATE:
TEAM MEMBERS: Leslie Bushara
resource evaluation Media and Technology
Goodman Research Group, Inc., (GRG), Cambridge, MA, conducted the formative evaluation of The Music Instinct project. The NSF-funded project aims to bring to PBS viewers the strong evidence of the connections between music and science, as well as to facilitate a deeper understanding of both fields. The Music Instinct project, presented by WNET/Thirteen, in collaboration with Mannes Productions, includes a two-hour television program, a website, and ancillary educational materials. The purpose of the formative evaluation is to obtain timely information to support and guide the producers as they
DATE:
TEAM MEMBERS: Rucha Londhe Miriam Kochman Nivedita Ranade Irene F Goodman WNET/Thirteen Mannes Productions Inc.