Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
DATE:
TEAM MEMBERS: Christine Roman Elisa Israel
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource research Media and Technology
SciGirls Strategies is a National Science Foundation–funded project led by Twin Cities PBS (TPT) in partnership with St. Catherine University, the National Girls Collaborative, and XSci (The Experiential Science Education Research Collaborative) at the University of Colorado Boulder’s Center for STEM Learning. This three-year initiative aims to increase the number of high school girls recruited to and retained in fields where females are traditionally underrepresented: technical science, engineering, technology, and math (STEM) pathways. We seek to accomplish this goal by providing career and
DATE:
TEAM MEMBERS: Rita Karl Bradley McLain Alicia Santiago
resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource research Media and Technology
Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning
DATE:
TEAM MEMBERS: Annetta Leonard Wendy Frazier Elizabeth Folta Shawn Holmes Richard Lamb Meng-Tzu Cheng
resource project Media and Technology
Realizing the power of CyberLearning to transform education will require vision, strategy, and an engaged, talented community. Activities are needed to energize the community, refine and sharpen the path forward, and provide a more active and ongoing forum for clarifying the big ideas and challenging questions. In response to this need, SRI International, together with the Lawrence Hall of Science and with key support from the National Geographic Society, will organize a set of activities to advance a shared vision of the future of learning, encompassing the systems, people, and technology dimensions mutually necessary for any scalable and lasting advances in education. The innovative format for these activities is inspired by the TED talks, Wikipedia, and social networking. As in TED, a small set of leading researchers will be selected to give very short, very high quality, stimulating talks. These CyberLearning Talks will be featured at a 1-day summit meeting in Washington, DC, streamed so that local cyberlearning research communities may participate at a distance, and posted on a website. As in Wikipedia, CyberLearning Pages will be created, each page featuring a synopsis of a big idea in CyberLearning and the relevant research challenges. The 1-day conference will be followed by a small 1-day workshop focusing on how to evaluate cyberlearning efforts, identify progress, and identify important new directions. Finally, to disseminate and stimulate conversation about both the video talks and Wikipedia entries, a presence for the community will be created on social networking sites. The target outcomes of the effort will be (i) a cyberlearning research community with participants from across the many current constituent communities, and fostered awareness and appreciation of the broad range of expertise and interests across that wider community; (ii) foundations for sustained discussion of big ideas, insights, and challenges to help this new community define a more engaged, crisper vision of its own future, (iii) a community resource that can become a site for interconnecting stakeholders in the CyberLearning community and supporting investigators in improving field-generated proposals, and (iv) an emerging sense of direction for CyberLearning among a wider audience of leaders. Such community building and awareness is expected to foster collaborations that will lead to innovative and research-grounded ways of using technology to transform education -- formal and informal and across a lifetime.
DATE: -
resource project Media and Technology
This project is designed to improve communication between scientists and the public focusing on the role of evidence in science. It is a two-year project that includes: 1) implementing a national survey on the public use of science web sites; 2) conducting a national Science Education Outreach Forum bringing together scientists and informal science educators; 3) implementing workshop sessions at a national conference to disseminate lessons learned from the survey and Forum; and 4) developing a prototype website on the role of evidence that will be evaluated for audience engagement and understanding. This project builds on the Exploratorium's prior NSF-funded project (ESI#9980619) developing innovative strategies using the Internet to link scientists and the public using Webcasts, annotated datasets and interactive web resources. Project collaborators include the Pew Internet and American Life Project, Palmer Station, Scripps Oceanographic Institute, FermiLab and the Society of Hispanic Physicists among others. The research and evaluation of the project has the potential for strategic impact by providing new information and models on how science centers can more effectively use the Internet to improve communication between scientists and the public while engaging learners more effectively.
DATE: -
TEAM MEMBERS: Robert Semper Melissa Alexander
resource research Professional Development, Conferences, and Networks
As a part of the strategy to reach the NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forum Objective 1.2: Provide resources and opportunities to enable sharing of best practices relevant to SMD education and public outreach (E/PO), the Informal Education Working Group members designed a nationally-distributed online survey to answer the following questions: 1. How, when, where, and for how long do informal educators prefer to receive science, mathematics, engineering, and/or technology content professional development? 2. What are the professional development and
DATE:
TEAM MEMBERS: NASA Science Mission Directorate Education and Public Outreach Forums Informal Education Working Group Lindsay Bartolone Suzanne Gurton Keliann LaConte Andrea Jones