Skip to main content

Community Repository Search Results

resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will build and test a new model for co-created public engagement with science activities in partnership with civic, community, and scientist partners. The innovation to be tested is deliberative dialogues in science museums that help reduce the polarization about socio-scientific issues, giving people a greater voice in science, and addressing barriers that disconnect scientists from the public. The project will engage four target audiences (informal science education/ISE professionals, civic, community and scientist partners). Science museum partners include Museum of Science (MOS) Boston, Oregon Museum of Science, the Michigan Science Center, and the North Carolina Museum of Life and Science. The project is designed to have a strategic impact on how ISE institutions choose topics of STEM engagement and build public Forum programs.

There will be two evaluation teams for the project. MOS Research and Evaluation will act as formative evaluation mentors for the four partner sites as they co-create their forums. They will provide evaluation capacity building for the sites using team-based inquiry as they create and understand the potential impacts and outcomes of the model. Data collection will include panel surveys and focus groups. The evaluation will explore how the forums can decrease 1) public polarization around STEM topics and (2) the disconnect between scientists, civic organization, and the public. The external summative evaluation will be conducted by Rockman et al (REA). They will conduct a study of the project's process to help the team identify challenges and strategies for overcoming them as they work through the phases of public engagement. The summative study will focus on the project goals taking a qualitative approach. Early interviews with partner participants will explore their strengths and weaknesses in taking on this type of public engagement model including the extent of their previous work with civic partners. Later interviews will investigate what factors have enabled or hindered this project. Summative evaluation questions will also address changes in attitudes toward public engagement with science. REA will collect feedback from summit attendees through intercept interviews and post-surveys administered within a week at the event's conclusion to explore the any changes in knowledge or confidence in undertaking this type of model. REA will present findings from the external evaluation during the annual meeting of the Association of Science-Technology Centers and publish reports to Informalscience.org. Once the model has been developed and tested it will be disseminated to an initial group of 25-30 science museums and eventually to the entire ISE museum field.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. A frequently overlooked but significantly under-represented STEM audience is people who live in rural settings. The proposed conference is the first of its kind to bring together key innovators and experts in rural Informal STEM education, to address this question: How can we build on recent innovations to create more effective and scalable pathways for informal STEM learning in rural communities?

The conference will focus primarily on advancing informal STEM education for rural youth, but will also include some participants who cross boundaries, to situate the work in an ecosystem perspective: informal-formal education, childhood-adult education, rural ecosystems and economic drivers for STEM related jobs. The provisional list of topics will be refined through a pre-conference survey of participants, and will be followed with a report that includes survey responses, conference discussion, and final recommendations by participants. The conference will be held in Washington D.C. to enable policymakers to attend.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Websites, Mobile Apps, and Online Media
The ACCEYSS (Association of Collaborative Communities Equipping Youth for STEM Success) Network and Model project, an NSF INCLUDES Design and Development Launch Pilot, at Texas State University is forming a university-community partnership between interdisciplinary researchers (ACCEYSS research team), faith leaders and other community partners to implement an innovative model that prepares underrepresented and underserved youth to pursue undergraduate science, technology, engineering, and mathematics (STEM) degrees. The inaugural ACCEYSS network will include Texas State University, San Marcos Consolidated Independent School District, San Marcos Youth Service Bureau, City of San Marcos-Office of the City Manager, Hays County Youth Initiative, the Calaboose African American History Museum, and several local faith-based organizations. Many historic advancements have been made through the efforts and activities of faith and community leaders uniquely poised to motivate and galvanize community-based action. A collaboration among these academic institutions, social/cultural organizations, and faith partners to work with the families and youth of underrepresented/underserved populations will be an essential asset for generating new perspectives and ideas for improving STEM academic and career outcomes related to broadening participation in the scientific enterprise.

During this launch pilot, the ACCEYSS research team and network will collaborate to design and develop the ACCEYSS model as a culturally-relevant, blended-learning strategy that integrates online and in-person STEM enrichment activities (e.g., summer institute, afterschool clubs) that are aligned with the Science and Engineering Practices and Disciplinary Core Ideas Dimensions of the K-12 Next Generation Science Education Standards. The collective impact framework will be used to build diverse capacity, leverage asset-based community development, and sustain mutually reinforcing non-exclusive policies and practices for STEM diversity and inclusion. Additionally, in this launch pilot, a multifaceted design-based research approach will be utilized to support middle and high school students' interest in and pursuit of STEM studies.
DATE: -
TEAM MEMBERS: Shetay Ashford Kristy Daniel (Halverson) Dana Garcia
resource project Websites, Mobile Apps, and Online Media
The American Association for the Advancement of Science (AAAS) is creating, implementing and evaluating a forum for the NSF INCLUDES broadening participation community of practice and for engaging the NSF INCLUDES awardees and science, technology, engineering and mathematics (STEM) researchers across the nation to expand the NSF INCLUDES broadening participation network. The NSF INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in STEM discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields.

The NSF INCLUDES Open Forum will use the AAAS Trellis networking platform and the organization's experience engaging communities of practice focused on broadening participation, STEM education and STEM research. The project builds on the success of a prior NSF INCLUDES Conference award (HRD-1650509) that was addressing goals to define networking needs of the first round of NSF INCLUDES Design and Development Launch Pilots (DDLP); to develop design specifications for NSF INCLUDES networking, curating of resources, and supporting communities of practice; and to propose tools, techniques, capacities and functionalities for an NSF INCLUDES national network.

The NSF INCLUDES Open Forum project includes advisory board members with expertise in networking platforms and others with broadening participation knowledge and experience. A yearly conference for NSF INCLUDES awardees will offer participants an opportunity to learn about how Trellis platform upgrades, functionality and technology options (e.g., a smartphone application) can be used in new ways to engage a broader community of partners interested in broadening participation in STEM research and education contexts. An external evaluator will assess the activities and outcomes of the NSF INCLUDES Open Forum both during implementation and at project end. The PIs will also communicate the outcomes of the project to broader audiences, both academic and non-academic, and encourage a dialogue within the NSF INCLUDES community about the use of technology for organization and communication within a network.
DATE: -
TEAM MEMBERS: Shirley Malcom Josh Freeman
resource project K-12 Programs
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.

The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE: -
TEAM MEMBERS: David Shintani Julie Ellsworth Karsten Heise Robert Stachlewitz Regina Tempel
resource project K-12 Programs
Arizona State University's Ira A. Fulton Schools of Engineering with the Maricopa County Community Colleges District and K-12 school districts along with industry partners, Honeywell, Intel, and Texas Instruments, and the Helios Education Foundation will implement an NSF Design and Development Launch Pilot to address the broadening participation objectives of enhancing entry and persistence of underrepresented groups in engineering. This alliance will identify and develop effective mechanisms to impact entry and persistence in engineering at scale and to expand the effort for the region, serving as a model for Arizona and other universities nationally. Diversity is often seen as a valuable commodity for fostering innovation and creativity in engineering, and extant theoretical and empirical literature provides evidence of the importance a diversified engineering workforce can have to spark scientific and technological innovation to solve complex problems. Nationally, there is a consistent shortage of available diverse engineers and scientists, which is believed to compromise the country's ability to sustain its leadership position as a global force. This project will create engineering pathways for underrepresented groups and identify and develop effective mechanisms that impact these students' entry and persistence in engineering.

A total of 500 high school students, 100 2-year college students, and 200 four-year college students will participate in the project. The research measures will focus on students' academic/career awareness and interest in engineering and the degree to which students develop a strong identity and affinity for engineering. It is expected that the alliance affiliates will develop into adaptive systems that respond to needs of first-generation students at various pathway junctures. This project has the potential to transform educational experiences and support systems for first-generation students.
DATE: -
TEAM MEMBERS: Kyle Squires Roberta Anslow-Hammond Maria Reyes James Collofello Tirupalavanam Ganesh
resource project Professional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.
DATE: -
TEAM MEMBERS: Natasha Smith-Walker Elizabeth Lehman
resource project Professional Development, Conferences, and Networks
The University of Maine will address the grand challenge of increasing Native American participation in the science,technology, engineering and mathematics (STEM) enterprise in an NSF INCLUDES Design and Development Launch Pilot project addressing culturally relevant pedagogy, incorporating Community Elders, Cultural Knowledge Keepers, and mainstream secondary and higher education institutions in the development of STEM pedagogy that can be replicated to other underrepresented and underserved populations. Partners in the effort include the Wabanaki Youth in Science program (WaYS)(a non-profit organization), Salish Kootenai College (a Tribal College), Massachusetts Institute of Technology (a research university), the National Indian Education Association (a non-profit membership organization) and the current NSF INCLUDES Design and Development Launch Pilot project at the University of Maine (the Stormwater Research Management Team (SMART)). This NSF INCLUDES partnership provides students with evidence-based STEM activities involving culturally relevant internships, mentoring, STEM professional development activities and other support. Non-native students will reciprocally participate in Native American learning environments.

The foundation for the project's activities is based on the WaYS program in science education that incorporates Traditional Ecological Knowledge (TEK). The goals of the project are to: 1) create and integrate curriculum that embraces TEK and western science as equal partners; 2)develop and implement protocols to incorporate a continued mentorship program for WaYS and STREAM engineering students; 3)develop a framework to bridge the gap between high school and college; and 4) foster collaboration among Community Elders, Cultural Knowledge Keepers and University of Maine faculty in a model that could be transferred to other communities. Internal and external evaluation activities will add to the scholarly literature on educating Native Americans and non-native students in STEM disciplines. Dissemination of project results will include published peer-reviewed journal articles on newly developed pedagogy and conference presentations at the American Indian Science and Engineering (AISES) national conference, the National Diversity in STEM Conference, National Science Teachers Association, AAAS, ASEE and the National NSF INCLUDES Network.
DATE: -
TEAM MEMBERS: Darren Ranco John Daigle Mindy Crandall Shaleen Jain
resource project Professional Development, Conferences, and Networks
The goal of FLIP (Diversifying Future Leadership in the Professoriate), an NSF INCLUDES Design and Development Launch Pilot, is to address the broadening participation challenge of increasing the diversity of the future leadership in the professoriate in computing at research universities as a way to achieve diversity across the field. According to the 2016 CRA Taulbee Survey, only 4.3% of the tenure-track faculty at PhD-granting universities are from underrepresented minorities. This challenge is important to address because diverse faculty contributes to academia in the following critical ways: serve as excellent role models for a diverse study body, bring diverse backgrounds to the student programs and policies developed by the department, and bring diverse perspectives to the research projects and programs. Further, the focus is on research universities, because in practice, key national leadership roles, such as serving on national committees that impact thefield of computing, often come from research universities.

The shared purpose and broad vision of the FLIP launch pilot is to increase faculty diversity in computing at research universities by increasing the diversity of PhD graduates from the top producers of computing faculty. The focus is on four underrepresented groups in computing: African Americans; Hispanics; Native Americans and indigenous peoples; and Persons with Disabilities. The long-term goal is to pursue this vision through strategic partnerships with those institutions that are the top producers of computing faculty and organizations that focus on diverse students in STEM, as well as partnerships that collectively adopt proven strategies for recruiting, graduating, and preparing a diverse set of doctoral students for academic careers. The purpose of the pilot is to establish a unified approach across the different partners that will build upon proven strategies to develop novel practices for increasing the diversity of the PhD graduates from key institutions, thereby increasing the faculty diversity in computing at research universities. For the pilot, FLIP will focus on recruitment and admissions and professional development for current PhD students.
DATE: -
TEAM MEMBERS: Valerie Taylor Charles Isbell Jeffrey Forbes University of Chicago
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Higher Education Programs
The University of New Hampshire (UNH) NSF INCLUDES Design and Development Launch Pilot project is a collaborative effort with the Community College System of New Hampshire, Advanced Manufacturing (AM) businesses, NH Economic Development, and the University of New Hampshire to address workforce development in the Advanced Manufacturing sector in the state. The Advanced Manufacturing Program (AMP) uses a framework built on the Collective Impact collaboration model that enables AMP partners to innovate, plan, and implement strategies that significantly increase NH's community colleges (CC) as a source for future workers and leaders in AM.

Specifically, this proposal addresses the pressing need for increasing numbers of AM workers through strategies designed to increase the retention of low socioeconomic status (LSES) students in CC STEM degree programs. AMP coordinates four key implementation strategies: 1) Co-requisite remediation within mathematics and quantitative reasoning; 2) Guided Pathways mentorship with "high touch" advising and student guidance resources that combines clearly defined academic pathways leading to 4-year college transfer and job placement; 3) paid work-based learning (WBL) experiences in industry and academic research; and 4) mentor inclusiveness training to prepare the workplace and academic settings to receive LSES students into a supportive climate. Successfully coordinating these four components through the process of Collective Impact collaboration will lead to a flexible and integrated AM workforce pipeline that serves CC AM students, AM industry partners, and the state as a whole. Findings will be disseminated to academic, business, and government stakeholders in NH, the region, and nationally to inform and improve broadening participation initiatives.
DATE: -
TEAM MEMBERS: Palligarnai Vasudevan Stephen Hale Brad Kinsey Leslie Barber Melissa Aikens
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles