Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Public Programs
This is an NSF Postdoctoral Research Fellowship in Biology, under the program Broadening Participation of Groups Under-represented in Biology. The fellow, Robert Habig, is conducting research and receiving training that is increasing the participation of groups underrepresented in biology. The fellow is being mentored by David Lahti at Queens College, City University of New York. The goal of the fellow's project is to perform a comparative evolutionary analysis of nest construction in the weaverbirds (Ploceus spp.). The evolutionary history of behavior can be nearly intractable and resistant to quantitative analysis. One strategy for illuminating our understanding of behavioral evolution is to conduct comparative studies of animal architectures, such as nests. Unlike behaviors themselves, nests persist through time, and have structures that can be disassociated into several quantitative features, which permits easy and comparable measurements and allows scientists to address questions about evolutionary history and functional relevance. The fellow's research addresses two major questions: (1) How do patterns of nest construction vary within and between species? (2) How do interrelated evolutionary processes shape variation in nest structure? This project is important for advancing foundational scientific knowledge, and will be the first study of weavers incorporating both molecular data and nest morphology to better understand the evolutionary underpinnings of a complex behavioral process. The fellow is also broadening participation in science by mentoring students underrepresented in biology.

The Fellow will reconstruct the evolution of nest construction in Ploceus weaverbirds incorporating advanced phylogenetic and morphological techniques including bioinformatics, computer modeling, X-ray computed tomography, and image processing. The Fellow will also conduct fieldwork in two hotspots of weaverbird diversity, the Awash Valley in Ethiopia and the Limpopo Province of South Africa, and collect behavioral data (e.g. rates of predation and brood parasitism; mating and parental behavior) and morphological data (e.g. nest structure) to test hypotheses of how distinct types of evolutionary selection shape the evolution of nest construction. The proposed comparative study can thus address questions such as how rapidly certain nest structural features evolve, which features are ancestral versus derived, which tend to exhibit phylogenetic signal, and which evolve in response to environmental features. The Fellow is receiving training in three-dimensional morphological analyses, phylogenetic tree construction, bioinformatics, computer modeling, and mentoring skills. The plan to broaden participation includes (1) recruitment, training, and mentoring of Queens College students from underrepresented groups in biology; (2) designing an evolutionary biology curriculum that ties in the research of the fellowship; (3) teaching an evolutionary biology class to underrepresented middle and high school students at the American Museum of Natural History; and (4) facilitating a research team for middle school and high school students.
DATE: -
TEAM MEMBERS: Bobby Habig
resource project Exhibitions
NASA@ My Library is made possible through the support of the National Aeronautics and Space Administration (NASA) Science Mission Directorate as part of its Science Activation program. The project is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (SSI) in partnership with the American Library Association (ALA) Public Programs Office, Lunar and Planetary Institute (LPI), and Education Development Center (EDC). From 2016-2020, 78 public libraries (75 partner libraries and 3 pilot libraries), 18 State Library Agencies, 6 Portal to the Public Network sites, and 30 NASA-funded scientists participated in the project. More than 225,000 library patrons were reached through their efforts.

In 2021-2022, public libraries, universities, and state library agencies will participate in the project to increase and enhance STEAM learning opportunities in their communities, with an emphasis on reaching audiences underrepresented in STEM education and professions. 
DATE: -
TEAM MEMBERS: Keliann LaConte Paul Dusenbery Anne Holland James Harold Melanie Welch Lainie Castle Christine Shupla Jessica Santascoy Ginger Fitzhugh
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Public Programs
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.

The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.

This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
DATE: -
TEAM MEMBERS: Dina Markowitz
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Media and Technology
A report following the 2016 Environmental Health Summit recommended engaging citizens in creating their own knowledge and solutions, thus ensuring that their concerns are adequately addressed and promoting sustainability of community projects. Indeed, citizen science has the potential to initiate a cascade of events with a positive ripple effect that includes a more diverse future STEM and biomedical workforce. This SEPA proposal involves the establishment of WE ENGAGE – an informal, citizen science-based, environmental health experiential learning program designed in partnership with and for under resourced communities struggling with health and environmental health challenges. Its purpose is to actively engage and build the citizen science capacity of citizens living in a single cluster of three contiguous under resourced, minority Cincinnati neighborhoods where generational challenges continue to plague residents despite the presence of established academic-community partnerships. Our hypothesis is that community-informed, experiential learning opportunities outside of the classroom that are structured, multi-generational, and story-based will encourage a) the active asking, discussion about, and answering of relevant complex health and environmental questions so that individuals and communities can plan action steps to make better health choices and pursue healthier environments, and b) greater interest and confidence in pursuing formal biomedical/STEM education and STEM careers. Our program has three specific aims: 1) We will co-create tailored story- based (graphic novel style) STEM education materials with a community advisory board and offer informal STEM education and research training to our target communities; 2) we will facilitate the application of scientific inquiry skills to improve health via community-led health fairs that use an innovative electronic health passport platform to collect data and through facilitated community discussions of health fair data to generate motivating stories to share; and 3) we will facilitate the application of scientific inquiry skills to foster community pride and activism in promoting healthier/safer built environments via walking environmental assessments. As in aim 2, facilitated discussions will be held to spur future community based participatory research studies and interventions. Critical to our success is the concept of storytelling. Storytelling is a foundation of the human experience. A key purpose of storytelling is not just understanding the world, but positively transforming it. It is a common language. Bringing together STEM concepts in the form of a story increases their appeal and meaning. Later, the very process of community data collection gives individuals a voice. In a data story, hundreds to millions of voices can be distilled into a single narrative that can help community members probe important underlying associations and get to the root causes of complicated health issues relevant to their communities. Through place based, understandable, motivating data stories, the community’s collective voice is clearer—leading to relevant and viable actions that can be decided and taken together. From preventing chronic disease, to nurturing healthier environments, to encouraging STEM education — stories have unlimited potential.

Public Health Relevance Statement:
Narrative WE ENGAGE is an informal citizen science-based, experiential learning program designed in partnership with and for middle schoolers to adults living in under resourced minority communities. Using the power of data collection and storytelling, its purpose is to actively engage citizens in STEM/research education and training to encourage a more diverse future workforce and to sustainably build local capacity to ask and answer complex health and environmental questions relevant to their communities. Further, by engaging citizens and giving them a more equitable stake in the research process, they are better able to discover their own solutions.
DATE: -
TEAM MEMBERS: Melinda Sue Butschkovacic Susan Ann Hershberger
resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Professional Development, Conferences, and Networks
This broadening participation project will focus on a regional workshop aimed at increasing Historically Black Colleges and Universities' (HBCUs) capacity to develop high quality proposals for future competitions of various programs in the Division of Research on Learning. The proposed effort will occur through three specific steps involving a: (1) pre-workshop webinar to introduce and lay the foundation for the opportunity; (2) full two-day workshop to engage participants in a rigorous grant-writing exercise; and (3) post workshop follow-up to provide ongoing support and proposal development guidance. Through a theory-driven process, the goal is to establish some degree of conformity for maximizing grant productivity around strategies and ideas shown to be effective in retaining students in the STEM pipeline.

The multi-tiered workshop will establish a launching pad for increasing attendees' capacity to build on prior knowledge and use best practices to improve future grant writing efforts. Specialized activities will help prepare HBCUs to increase their contributions to diversifying the future STEM workforce, support innovation and creativity in STEM fields, expand networking strategies, and promote opportunities to learn. Central to this capacity-building effort will be a focus on understanding the current research context and expectations for competitive participation in funding opportunities offered by NSF. This, in turn, will align with the Foundation's strategic direction for broadening participation in STEM through meaningful cutting-edge STEM education research. Resources from the workshop will be made available online to facilitate broader dissemination of information beneficial to HBCUs and other education institutions engaging in broadening participation efforts.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ivory Toldson
resource project Professional Development, Conferences, and Networks
This project will advance evidence-based efforts to broaden informal STEM engagement via the 2019 Inclusive Science Communication (Inclusive SciComm) Symposium, to be held September 27-29, 2019, at the University of Rhode Island in Kingston, Rhode Island. Science communication, defined as any information exchange designed to engage targeted audiences in conversations or activities related to STEM topics, is a rapidly expanding area of research and practice with the potential to significantly increase public participation and sense of belonging in STEM fields. That said, there are few opportunities for its practitioners and scholars to convene around how to make their work both inclusive and equitable, which collectively acknowledge identity, cultural differences, and epistemologies as part of broadening participation. The 2019 symposium will address this gap through panels, workshops, and posters focused on three themes that represent critical and difficult aspects of inclusive science communication: (1) New Languages, Practices, Knowledge, and Research; (2) Changing Systems and Structures through Science Communication; and (3) Social Responsibility and Ethics. Within these themes, sessions will be organized to address major barriers of absence identified by participants in the 2018 Inclusive SciComm Symposium: skills, lessons learned, and knowledge gaps, especially with regard to facilitating difficult conversations across difference (critical dialogue). The symposium also will emphasize the need to integrate research and practice to advance inclusive, equitable, and intersectional approaches to science communication.

There is an urgent need to question assumptions and examine evidence regarding how science communicators and scholars approach efforts to broaden participation, but insufficient data exist on the inputs and outputs of inclusive and equitable practice. Critical dialogue about potentially uncomfortable topics such as privilege, power, or marginalization is an essential tool for inclusive practice and pedagogy. Finding from the 2018 Inclusive SciComm Symposium indicated that many educators and practitioners lack the language, skills, or confidence to initiate this type of dialogue. This project supports the knowledge-building component of the 2019 Inclusive SciComm Symposium to inform future science communication training, practice, and scholarship, by building on preliminary data collected during the 2018 symposium and responding to the need for more robust evaluation of science communication activities. Applying the Theory of Planned Behavior, the project will employ pre/post symposium surveys to investigate how 2019 symposium activities affected knowledge, attitudes, subjective norms, and efficacy (the variables of the Theory of Planned Behavior) of attendees with regard to critical dialogue. Focus groups at the symposium will be used to identify priority research areas related to inclusion, generally, and critical dialogue, specifically, that could advance inclusive science communication practice and beneficial outcomes. The project also will evaluate symposium impacts with regard to 1) attendees' opinions on utility of symposium components for advancing inclusive science communication and 2) how attendees' experience and response orientations inform their approaches to difficult science communication conversations. Qualitative data from the surveys and focus groups will be thematically coded using constant comparison.

This project will have strategic impact for inclusive science communication practice and, therefore, for informal learning and public engagement with STEM topics. Increasing awareness and effective implementation of critical dialogue by science communicators and trainers should enhance both for ethical engagement of traditionally under-represented and marginalized groups and should foster diverse types of public participation in societal debates about scientific issues. The outcomes of this research will benefit and link the complementary, but often siloed, fields of informal science learning and science communication. A final report will summarize research findings and offer specific next steps to advance inclusive science communication practice and research, especially with regard to fostering critical dialogue. The report will be posted on inclusivescicomm.org and distributed via a national network of partners working in informal science education, science communication, and public engagement.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sunshine Menezes Hollie Smith
resource project Public Programs
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.

Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.

This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Rabiah Mayas Bernadette Sanchez