Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences. This ITEST project aims to research the STEM career interests of late elementary and middle-school students and, based on the results of that research, build an informal education program to involve families and community partners to enhance their science knowledge, attitudes, experiences, and resources. There is an emphasis on underrepresented and low income students and their families.

The project will research and test a new model to promote the development of positive attitudes toward STEM and to increase interest in STEM careers. Phase 1 of the project will include exploratory research examining science capital and habitus for a representative sample of youth at three age ranges: 8-9, 9-10 and 11-12 years. The project will measure the access that youth have to adults who engage in STEM careers and STEM leisure activities. In phase II the project will test a model with a control group and a treatment group to enhance science capital and habitus for youth.
DATE: -
resource project Media and Technology
The New York Hall of Science (NYSCI) will develop, test, market, and disseminate an interactive graphic novel iBook that will use the interests of young people (ages 10–14) in animals and comics to engage them in learning about health and clinical research. Provisionally called “Transmission: Astonishing Tales of Human-Animal Diseases,” the project represents a new approach to engaging young people in biomedical science learning.

Graphic novels are one of the fastest growing categories in publishing and bookselling, and today, they are significantly more sophisticated than the comics that came before them. They are also enormously popular among young people. The proposed graphic novel iBook will focus on the diseases that humans and animals share and pass between them (sometimes to devastating consequences), from Ebola, bird flu, and West Nile disease to influenza, measles, and pneumonia. Moreover, like many other contemporary graphic novels, it will address a pressing issue of the day—amely, the growth of zoonotic and anthropozoonotic diseases.

The iBook will be developed in a digital, interactive format (a growing trend within the genre) and, like many graphic novel titles, will take a mystery and forensic crime approach to exploring its content. Ultimately, Transmission will become a national model for conveying biomedical understanding through the use of up-to-the-minute interactive iBook technologies and an engaging graphic novel format.
DATE: -
TEAM MEMBERS: martin weiss Geralyn Abinader
resource project Media and Technology
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.

Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.

PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.

NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
DATE: -
TEAM MEMBERS: Patti Parson Leah Clapman
resource project Public Programs
Citizen science is a form of Public Participation in Scientific Research (PPSR) in which the participants are engaged in the scientific process to support research that results in scientifically valid data. Opportunities for participation in real and authentic scientific research have never been larger or broader than they are today. The growing popularity and refinement of PPSR efforts (such as birding and species counting studies orchestrated by the Cornell Lab of Ornithology) have created both an opportunity for science engagement and a need for more research to better implement such projects in order to maximize both benefits to and contributions from the public.

Towards this end, Shirk et al. have posted a design framework for PPSR projects that delineates distinct levels of citizen scientist participation; from the least to the highest level of participation, these categories are contract, contribute, collaborate, co-create, and colleagues. The distinctions among these levels are important to practitioners seeking to design effective citizen science programs as each increase in citizen science participation in the scientific process is hypothesized to have both benefits and obstacles. The literature on citizen science models of PPSR calls for more research on the role that this degree of participation plays in the quality of that participation and related learning outcomes (e.g., Shirk et al., 2012; Bonney et al., 2009). With an unprecedented interest in thoughtfully incorporating citizen science into health-based studies, citizen science practitioners and health researchers first need a better understanding of the role of culture in how different communities approach and perceive participation in health-related studies, the true impact of intended educational efforts from participation, and the role participation in general has on the scientific process and the science outcome.

Project goal to address critical barrier in the field: Establish best practices for use of citizen science in the content area of human health-based research, and better inform the design of future projects in PPSR, both in the Denver Museum of Nature & Science’s Genetics of Taste Lab (Lab), and importantly, in various research and educational settings across the field.

Aims


Understand who currently engages in citizen science projects in order to design strategies to overcome the barriers to participation that occur at each level of the PPSR framework, particularly among audiences underrepresented in STEM.
Significantly advance the current knowledge regarding how citizen scientists engage in, and learn from, and participate in the different levels of the PPSR framework.
Determine the impact that each stage of citizen science participation has on the scientific process.
DATE: -
TEAM MEMBERS: Nichole Garneau Tiffany Nuessle
resource project Public Programs
NASA's Universe of Learning provides resources and experiences that enable diverse audiences to explore fundamental questions in astronomy, experience how science is done, and discover the universe for themselves. Using its direct connection to science and science experts, NASA's Universe of Learning creates and delivers timely and authentic resources and experiences for youth, families, and lifelong learners. The goal is to strengthen science learning and literacy, and to enable learners to discover the universe for themselves in innovative, interactive ways that meet today's 21st century needs. The program includes astronomical data tools, multimedia resources, exhibits and community programs, and professional learning experiences for informal educators. It is developed through a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, the Jet Propulsion Laboratory, the Smithsonian Astrophysical Observatory, and Sonoma State University.
DATE: -
TEAM MEMBERS: Denise Smith Gordon Squires Kathy Lestition Anya Biferno Lynn Cominsky
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program supports new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This project will meet this goal through rigorous research and the broad implementation of an environmental science literacy professional development and learning program for informal educators and youth engaged in outdoor science programs (OSP). With growing support from the literature and the Next Generation Science Standards (NGSS), much attention has been placed on creating and leveraging interdisciplinary science learning opportunities beyond science classrooms. As such, an estimated 300 residential OSPs currently exist in the United States. Unfortunately, the informal educators often charged with facilitating these deep and impactful science learning experiences often lack robust formal training in evidenced-based, age-appropriate environmental science content knowledge and pedagogy specific for the youth in their programs. This issue is often more pronounced in under-resourced and under-served programs and communities. This project will directly address these pervasive challenges in the field by not only providing much needed science focused professional development and resources to informal educators but also by specifically targeting and training informal leaders and educators serving youth in predominately rural areas, low-income communities, and underrepresented communities.

Approximately 200 OSP leaders at 100 OSPs around the country will participate in a week-long, intensive training in the professional development model at one of five regional residential leadership institutes. OSP leaders will then redeliver the training to the approximately 1,500 OSP educators/field instructors in their home institutions. The OSP educators/field instructors will then use what they learn through the professional development to facilitate the environmental science learning program (i.e., curriculum, field experiences, resources, pedagogy) to over 1 million youth (grades 3-8) enrolled in their residential outdoor science programs. In addition, a rigorous implementation study, efficacy study and evaluation will be conducted. The implementation study will investigate: (a) Which of the professional learning model practices were implemented and (b) What successes and challenges the programs faced implementing the model. The mixed methods efficacy study will explore: (a) if outdoor science programs contribute to the development of science learning activation and environmental literacy? and (b) what are the features of these experiences that are correlated with increases in science learning activation and environmental literacy. Approximately 25-35 youth will be randomly selected from each of 50 randomly selected sites to participate in the efficacy study. The data and findings from the research and evaluation produced by this project will contribute to a relatively sparse knowledge and research base specific to youth efficacy and implementation processes and practices across nearly 1/3 of the estimated 300 existing residential outdoor science programs in the United States.
DATE: -
TEAM MEMBERS: Craig Strang Rena Dorph
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE: -
TEAM MEMBERS: Corrin Barros Koh Ming Wei Danko Tabrosi Emerson Odango
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane