Skip to main content

Community Repository Search Results

resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource evaluation Media and Technology
Ruff Family Science is an exploratory project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. More specifically, the project is undertaking a research and design process to create prototype
DATE:
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource project Websites, Mobile Apps, and Online Media
The ACCEYSS (Association of Collaborative Communities Equipping Youth for STEM Success) Network and Model project, an NSF INCLUDES Design and Development Launch Pilot, at Texas State University is forming a university-community partnership between interdisciplinary researchers (ACCEYSS research team), faith leaders and other community partners to implement an innovative model that prepares underrepresented and underserved youth to pursue undergraduate science, technology, engineering, and mathematics (STEM) degrees. The inaugural ACCEYSS network will include Texas State University, San Marcos Consolidated Independent School District, San Marcos Youth Service Bureau, City of San Marcos-Office of the City Manager, Hays County Youth Initiative, the Calaboose African American History Museum, and several local faith-based organizations. Many historic advancements have been made through the efforts and activities of faith and community leaders uniquely poised to motivate and galvanize community-based action. A collaboration among these academic institutions, social/cultural organizations, and faith partners to work with the families and youth of underrepresented/underserved populations will be an essential asset for generating new perspectives and ideas for improving STEM academic and career outcomes related to broadening participation in the scientific enterprise.

During this launch pilot, the ACCEYSS research team and network will collaborate to design and develop the ACCEYSS model as a culturally-relevant, blended-learning strategy that integrates online and in-person STEM enrichment activities (e.g., summer institute, afterschool clubs) that are aligned with the Science and Engineering Practices and Disciplinary Core Ideas Dimensions of the K-12 Next Generation Science Education Standards. The collective impact framework will be used to build diverse capacity, leverage asset-based community development, and sustain mutually reinforcing non-exclusive policies and practices for STEM diversity and inclusion. Additionally, in this launch pilot, a multifaceted design-based research approach will be utilized to support middle and high school students' interest in and pursuit of STEM studies.
DATE: -
TEAM MEMBERS: Shetay Ashford Kristy Daniel (Halverson) Dana Garcia
resource project Media and Technology
WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.

The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Sandra Sheppard Bill Tally
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Media and Technology
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.

To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.

The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Sonja Latimore Marisa Wolsky Megan Silander Borgna Brunner
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Innovations in Development project will develop new knowledge about joint parent-child participation in science talk and practices using a 2nd screen app synced with a television program. "Splash! Ask-Me Adventures" is an app designed to work in conjunction with a marine science-focused television program for children 2-8 years old that will premier nationally on PBS Kids (Fall 2016). This free app will include a variety of "Conversation Catalysts" tied to the television episodes to help parents support children's science learning at home and in other venues such as aquariums and science centers. The project aims to support children's conceptual understanding of science concepts and practices, empower parents and caregivers to facilitate learning during media engagement, and contribute to the research literature on joint engagement with media. Collaborating project partners include The Jim Henson Company, Curious Media, SRI Education, and The Concord Consortium. Innovation in new methodology and instrumentation resulting from this project includes the creation of two new research tools to measure (1) families' discourse while engaging with media and (2)the impact of "Splash! Ask-Me Adventures" on children's science learning. Potential contributions to society-at-large are: (1)young learners will be better prepared to meet STEM curriculum milestones in school and scientific/technical challenges as adults; (2) parents will use new dialogic questioning skills to become more confident and active learning facilitators during media and non-media experiences with their children; (3) Conversation Catalysts, a new sub-genre of educational apps will emerge, based on proven theories of beneficial adult-child interaction and the impact of designed joint engagement with media on informal learning; and (4)a new generation will embrace marine stewardship.
DATE: -
TEAM MEMBERS: Stephanie Wise Savitha Moorthy Ximena Dominguez Phil Balisciano Celine Willard Carlin Llorente
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Using hand-held mobile devices this project would test specialized Signing Glossaries for Science Exhibits (SGSE). The glossaries are developed from 5000 unique signing terms specific to the science in 6 partner institutions and designed to reach families with at least one member, ages 5-12+, who is deaf or hard of hearing and uses American Sign Language (ASL) for communication. The project would demonstrate the potential effectiveness of the venue-specific signing glossaries to enhance access to STEM learning during visits to informal STEM learning environments such as aquariums, botanical gardens, natural history museums, nature centers, science museums, and zoos.

While utilizing existing domain specific signing terms, the project will adapt and improve on their use in content specific informal science venues to increase the opportunity for the target audience to both enjoy and benefit from the wide array of informal science learning opportunities available to this group. The research should reveal how this approach might benefit those with other types of disabilities. The research questions are designed to understand both how family members might interact with a hearing disabled family member as well as how the disabled individual might learn more about a variety of STEM content in a setting that is not domain specific but uses the influence of science exhibits to inform, engage and interest members of the public generally.

Domain specific signing dictionaries have been developed, many by this PI, to address access to content specific topics in STEM. This proposal extends this concept to informal learning environments that are content specific to increase the opportunity for those with hearing disabilities to increase their capability to both enjoy informal science learning venues and to understand more of what these venues provide in terms of science learning.
DATE: -
TEAM MEMBERS: Judy Vesel
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Media and Technology
The Children’s Museum of Indianapolis (Museum) is creating Curious Scientific Investigator (CSI): Beyond Spaceship Earth, a project geared towards immersing children and families in science, technology, engineering, and math (STEM) disciplines, which will be launched in 2016.

As the lead institution, the Museum is partnering with NASA Johnson Space Center (JSC), Purdue University, and SpaceX to implement the project in Indianapolis.

CSI: Beyond Spaceship Earth will introduce children and families to the science of human space exploration in the 21st century. Through an array of informal learning experiences aimed at promoting STEM concepts and NASA’s educational outcomes the project will pursue the following objectives:

Immerse visitors in the ISS and laboratory environments;
Provide an environment to allow performing and manipulating experiments to understand the importance of NASA’s research and exploration; and
Engage in real-life and simulated experiences, including interactions with university students studying STEM disciplines, which encourage children and youth to explore STEM skills and careers through NASA’s research and exploration.
The Museum has designed an immersive International Space Station-themed exhibit along with contextual and authentic activities for children and families, with production set to begin in late 2015. Museum teams are currently completing front-end research, prototyping and exhibit design. Leveraging family and informal learning expertise and incorporating the experiences of real astronauts, this project will support understanding of NASA’s Human Exploration and Operations Mission Directorate (HEOMD) research and operations. This exhibit will also promote interest, engagement, and awareness of NASA’s achievements in space exploration and how these benefit life on Earth.
DATE: -
TEAM MEMBERS: Jennifer Pace-Robinson David Wolf
resource project Media and Technology
This project engages members of racially and economically diverse communities in identifying and carrying out environmental projects that are meaningful to their lives, and adapts technology known as NatureNet to assist them. NatureNet, which encompasses a cell phone app, a multi-user, touch-based tabletop display and a web-based community, was developed with prior NSF support. Core participants involved in programs of the Anacostia Watershed Society in Washington, D.C., and Maryland, and the Reedy Creek Nature Preserve in Charlotte, NC, will work with naturalists, educators, and technology specialists to ask scientific questions and form hypotheses related to urban waterway restoration and preservation of native species. They will then collect and analyze data using NatureNet, requesting changes to the technology to customize it as needed for their projects. Casual visitors to the nature centers will be able to interact with the environmental projects via the tabletop, and those who live farther away will be able to participate more peripherally via the online community. The research project, led by researchers from the University of Maryland, College Park, with collaborators from the University of North Carolina, Charlotte, and the University of Colorado, Boulder, will provide answers to two questions: 1) How do community-driven informal environmental learning projects impact participants, including their motivation to actively participate in science issues via technology and their disposition toward nature preserves and scientific inquiry? and 2) What are the key factors (e.g., demographic composition of participants, geographical location) that influence the development of community-driven environmental projects? Researchers will gather extensive qualitative and quantitative data to understand how community projects are selected and carried out, how participants approach technology use and adaptation, and how informal learning and engagement on STEM-related issues can be fostered over a period of several months and through iterative project cycles. Data will be collected through motivation questionnaires; focus groups; interviews; tabletop, mobile, and website interaction logs; field notes from participatory design and reflection sessions; and project journals kept by nature preserve staff. Through extensive research, iterative design, and evaluation efforts, researchers will develop an innovative model for community-driven environmental projects that will deepen informal science education by demonstrating how members of diverse communities connect environmental knowledge and scientific inquiry skills to the practices, values, and goals of their communities, and how technology can be used to facilitate such connections.
DATE: -
TEAM MEMBERS: Tom Yeh Mary Lou Maher Jennifer Preece Tamara Clegg Carol Boston