Skip to main content

Community Repository Search Results

resource project Media and Technology
WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.

The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Sandra Sheppard Bill Tally
resource evaluation Media and Technology
The Peg + Cat ELM2 project sought to combine robust media-integrated teacher training in both math content and facilitation of classroom and family engagement activities with transmedia resources that parents and children could utilize at home. This cohesive approach resulted in increases in teachers’ confidence in and knowledge about their mathematics instruction, parents’ engagement in activities and conversations with their children around math, and children’s positive and persistent attitudes towards math, as reported by their parents. Taken together, these findings suggest that the Peg +
DATE:
resource project Media and Technology
Purpose: This project will develop and test Kiko's Thinking Time, a series of game apps designed to strengthen children's cognitive skills related to executive functioning and reasoning. A principle objective of preschool is to prepare children for later success in school. Most programs focus on activities to support children's social and emotional development, and to strengthen pre-reading and mathematics competencies. Fewer programs explicitly focus on fostering children's executive function and reasoning skills—even though research in the cognitive sciences demonstrates these skills also provide a foundation for school-readiness.

Project Activities: During Phase I (completed in 2014), the team developed six prototype games and a teacher portal to track student progress. At the end of Phase I, results from a pilot study with 55 kindergarten students and 5 teachers demonstrated that the games operated as intended. Results indicated that students were engaged based on duration of game play, and that teachers were able to review game data for each child. In Phase II, the team will develop 15 more games and will further refine and enhance the functionality of the teacher portal. After development is complete, a pilot study will assess the feasibility and usability, fidelity of implementation, and the promise of the games for promoting students' executive functioning and reasoning. The researchers will collect data from 200 students in 10 preschool classrooms over 2 months. Half of the students in each class will be randomly assigned to use Kiko's Thinking Time while the other half will play an art-focused gaming app. Analyses will compare pre-and-post scores on measures of student's executive functioning and reasoning.

Product: Kiko's Thinking Time will be an app with 25 games, each based on tasks shown to have cognitive benefits in lab research. Each game will be designed to isolate and train skills related to executive functioning, such as: working memory, reasoning, inhibition, selective attention, cognitive flexibility, and spatial skills. Game play will be self-guided and adaptive, as the software will adjust in difficulty based on student responses. The app will work on tablets, smartphones, as well desktops. In addition, a companion website will allow teachers to track student performance and to obtain educational material around executive function and cognitive development.
DATE: -
TEAM MEMBERS: Grace Wardhana
resource project Media and Technology
With this Phase I funding, the project team will develop and test a prototype of the Toddler App and Cane which is intended to improve functional and adaptive school readiness skills for toddlers with visual impairments. The prototype will include a wearable hardware-based cane that wraps around a child's waist and provides tactile and audio cues to facilitate walking, a curriculum with game activities and walking routes, and an app that provides updates to special education practitioners and parents on their children's progress. In a pilot study with 10 toddlers with visual impairments, and their teachers and parents, the researchers will examine whether the prototype functions as planned, whether toddlers are engaged while using the prototype, and if teachers and parents believe the fully developed intervention will lead to increases in independence and school readiness.
DATE: -
TEAM MEMBERS: Elga Joffee
resource project Media and Technology
In prior research and development, the project team developed a StoryWorld, a computer-based intervention for English Learners (ELs) that presents children oral and written narratives in English while also providing the information in their first language. With this Phase I funding, the team will develop and test a prototype of a web-based dashboard that provides EL teachers real-time reports on children's progress in areas including for vocabulary, comprehension, fluency, and proficiency. At the end of Phase I, in a pilot study in three first grade classrooms, the researchers will examine whether the prototype functions as planned, is easy to use, and provides information teachers can understand and use to inform their language and literacy instruction?
DATE: -
TEAM MEMBERS: Cynthia Harrison Barbera
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Media and Technology
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.

To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.

The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Sonja Latimore Marisa Wolsky Megan Silander Borgna Brunner
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Innovations in Development project will develop new knowledge about joint parent-child participation in science talk and practices using a 2nd screen app synced with a television program. "Splash! Ask-Me Adventures" is an app designed to work in conjunction with a marine science-focused television program for children 2-8 years old that will premier nationally on PBS Kids (Fall 2016). This free app will include a variety of "Conversation Catalysts" tied to the television episodes to help parents support children's science learning at home and in other venues such as aquariums and science centers. The project aims to support children's conceptual understanding of science concepts and practices, empower parents and caregivers to facilitate learning during media engagement, and contribute to the research literature on joint engagement with media. Collaborating project partners include The Jim Henson Company, Curious Media, SRI Education, and The Concord Consortium. Innovation in new methodology and instrumentation resulting from this project includes the creation of two new research tools to measure (1) families' discourse while engaging with media and (2)the impact of "Splash! Ask-Me Adventures" on children's science learning. Potential contributions to society-at-large are: (1)young learners will be better prepared to meet STEM curriculum milestones in school and scientific/technical challenges as adults; (2) parents will use new dialogic questioning skills to become more confident and active learning facilitators during media and non-media experiences with their children; (3) Conversation Catalysts, a new sub-genre of educational apps will emerge, based on proven theories of beneficial adult-child interaction and the impact of designed joint engagement with media on informal learning; and (4)a new generation will embrace marine stewardship.
DATE: -
TEAM MEMBERS: Stephanie Wise Savitha Moorthy Ximena Dominguez Phil Balisciano Celine Willard Carlin Llorente
resource project Media and Technology
The National Association of Hispanic Nurses (NAHN), in association with the Hispanic Communications Network (HCN), proposes to address the shortage of bilingual professionals in all health fields by recruiting and interviewing bilingual role models and arranging to broadcast those interviews nationwide. Leveraging HCN’s nationally broadcast health education radio shows, whose cumulative audiences are larger than
NPR’s “All Things Considered,” this project has the potential to reach one out of every three US Hispanics during its first five years. This media campaign is intended to inspire Hispanic parents to encourage their children to study science and aspire to careers in the biomedical professions. It is also intended to inspire and empower Spanish-speaking adults from all walks of life to consider careers in the health professions. All broadcasts will tie to NAHN’s interactive website so that students and adults interested in changing careers can find mentors and educational resources. NAHN will also use Youtube, Facebook, mobile phone applications, and other new and popular social media technologies to reach a broad cross-section of English speaking youth and young adults. In addition to the national media outputs, attendees at NAHN’s annual conferences will have the opportunity to receive training in public speaking and media relations so they can more effectively use local media in their own communities to address health disparities and promote careers in the biomedical and health professions. NAHN will develop a standardized, bilingual Toolkit for public presentations. The Toolkit will include a PowerPoint presentation embedded with video containing gender and other- stereotype-busting role model interviews with Hispanic nurses; links to an online database of volunteer mentors; and a bilingual terminology packet that will aid nurses in creating linguistic and cognitive bridges between audience and professional knowledge bases. We expect that the refined Toolkit will empower nurses and other health professionals to become more effective public health educators and career role models during their presentations at community health events, career fairs, achievement clubs, and school assemblies. An Advisory Committee of other health organizations, professionals, and advocates will recommend Role Models and provide periodic feedback. Bilingual independent evaluators associated with the UC Berkeley School of Public Health will conduct qualitative and quantitative formative, iterative, and summative evaluations throughout the project. Their recommendations and findings will be incorporated into the project design and deliverables and shared with relevant fields.
DATE: -
TEAM MEMBERS: Angie Millan Jim Booth
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff