Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
Most experimental studies in the behavioral sciences rely on college students as participants for reasons of convenience, and most take place in North America and Europe. As a result, studies are only sampling from a narrow range of human experiences. The results of these studies have limited generalizability, failing to reflect the full range of mental and behavioral phenomena across diverse cultures and backgrounds. However sampling from broader populations is challenging, due to limited opportunities and access, heightened cost, and the need for specific knowledge about how to adapt research protocols to different communities. The goal of this workshop is to develop some tools and guidelines to help researchers overcome barriers to broader sampling, and to incentivize doing so through better institutional support.

The goal of this workshop is to develop tools to support and encourage increased robustness and generalizability in the experimental behavioral sciences. The meeting is dedicated to identifying and developing potential solutions to the so-called "WEIRD people" problem: the fact that most experimental behavioral science research is conducted with members of WEIRD populations (Western, Educated, Industrialized, Rich Democracies). The discovery that much of this research fails to generalize to broader populations and fails to capture the range of human patterned variation in thought and behavior creates a pressing need for research approaches to be more inclusive. Although there are researchers throughout the world who have developed effective models for overcoming these limitations, there are significant barriers to achieving robust and generalizable experimental behavioral research for most researchers. This workshop will bring together scholars from a range of disciplines whose research represents positive case studies of how to overcome these barriers. The participants aspire to accomplish three goals: 1) develop tools and training materials to help researchers enhance diversity in their research populations, 2) develop infrastructure solutions for connecting researchers across diverse contexts and populations, and 3) develop a set of recommendations for institutional changes to support enhancing diversity in experimental behavioral science through manuscript, grant, and tenure review.
DATE: -
TEAM MEMBERS: Douglas Medin Daniel Hruschka Lera Boroditsky Cristine Legare
resource project Media and Technology
Nurture Nature Center recently completed a 2 year project to develop a 6 Degrees of Connection educational program, supported by a grant from NASA’s CP4SMP. The program focuses on earth science concepts and the cross-cutting theme of interconnectedness, using personal relevance as a hook to capture students’ interest and motivate them to pursue STEM experiences and careers.

Over the course of two years, students, interns, and teachers were engaged to help develop a SOS program with an associated arts-based creative activity. An iterative program design process based on student and teacher evaluations resulted in the 6 Degrees of Connectionprogram which discusses earth systems connections involving the sun, space weather, and ozone; transportation, atmosphere and acid rain; climate change; and marine debris. The program is purposefully interactive and multi-disciplinary - students are encouraged to consider the cascading effects related to the production and transportation of their clothing during an interactive activity using the SOS, an arts-based activity after the SOS program helps participants visualize and physically diagram their connections to global issues, and students learn about STEM careers from clips of STEM professionals discussing the ways their work is tied to various human and earth systems.

We are pleased to share more about the project, the evaluation, and program materials on our website here http://nurturenaturecenter.org/6-degrees-of-connection-understanding-the-interconnectedness-of-earth-systems/.
DATE: -
TEAM MEMBERS: Kathryn Semmens Rachel Carr Jim O'Leary Joan Ramage
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Media and Technology
The lack of diversity in the clinician-scientist workforce is a “very serious concern to the NIH” and to health care professions. Current efforts to broaden participation in STEM fields typically target high school and college-age students. Yet, history and national trends suggest that these efforts alone will not result in rapid or significant change because racial and ethnic disparities are already evident by this time. Children are forming career preferences as early as elementary school, a time when they have little exposure to science and STEM career options. The overall vision of this team is to meet the nation’s workforce goal of developing a diverse, clinician-scientist workforce while meeting the nation’s STEM goals. As a step toward this vision, the goal of This Is How We “Role” is to inspire elementary school students towards careers as clinician-scientists by increasing the number of K-4 students with authentic STEM experiences.

This goal will be attained through two specific aims. The focus of Aim 1 is to distribute and evaluate a K-4 afterschool program across the diverse geographic regions of the US, to support the development of a robust and diverse clinician-scientist workforce. Aim 2 is focused on developing the community resources (afterschool program curriculum, informational books and online certificate program) for promoting health science literacy and encouraging careers in biomedical and clinical research for K-4 students from underserved and underrepresented communities. Combined, these aims will enhance opportunities for young children from underserved communities to have authentic STEM experiences by providing culturally responsive, afterschool educational programs which will be delivered by university student and clinician-scientist role models who are diverse in gender, race, and ethnicity.

Books and an online certificate program about health issues impacting people and their animals (i.e. diabetes, tooth decay) will be developed and distributed to children unable to attend afterschool programs. Further, by engaging veterinary programs and students from across the US, along with practicing veterinarians, this program will examine whether the approaches and curriculum developed are effective across the diverse communities and geographic regions that span the country. Elementary school teachers will serve as consultants to ensure that educational materials are consistent with Next Generation Science Standards, and will assist in training university students and clinician-scientists to better communicate the societal impact of their work to the public.

The program will continue to use the successful model of engaging elementary school students in STEM activities by using examples of health conditions that impact both people and their animals. Ultimately, this project will educate, improve the health of, and attract a diverse pool of elementary school students, particularly those from underserved communities, to careers as clinician-scientists.
DATE: -
TEAM MEMBERS: Sandra San Miguel
resource project Public Programs
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:

1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.

2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.

3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE: -
TEAM MEMBERS: Julia Kennard
resource project Public Programs
The number of Latinos and Native Americans represented in library and information science professions is extremely low. The University of Arizona School of Information Resources and Library Science will address this inequity in its Connected Learning in Digital Heritage Curation project, which focuses on archives and special collections, medical librarianship, and public librarianship. The project will educate 24 culturally competent master’s degree students to serve Latino and Native American communities in the digital world. Students will gain hands-on experience working as graduate assistants with project partners: the University of Arizona Libraries, Center for Creative Photography, Arizona Health Sciences Library, Pima County Public Library, Arizona Historical Society, Arizona State Museum, Labriola National American Indian Data Center, American Indian Film Gallery, Laboratory of Tree-Ring Research and the Arizona State Library, Archives and Public Records.
DATE: -
TEAM MEMBERS: Gina Macaluso
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource project Media and Technology
The Exploratorium comes together with the Education Development Center, Inverness Research, TERC, the University of Colorado - Boulder, and the University of Washington to form a Research+Practice (R+P) Collaboratory. The Collaboratory seeks to address and reframe the gap between research and practice in K-12 STEM education. This gap persists despite decades of work by many leading organizations, associations, and individuals. Attempts to close the gap have generally focused on creating resources and mechanisms that first explain or illustrate "what research says" and then invite educators to access and integrate findings into practice. Recently, however, attention has turned to the ways in which the medical sciences are addressing the gap between research and clinical practice through the developing field of "translational research." In medicine, the strategy has been to shift the focus from adoption to adaptation of research into practice. Implicit in the notion of adaptation is a bi-directional process of cultural exchange in which both researchers and practitioners come to understand how the knowledge products of each field can strengthen the professional activities in the other. Along these lines, the R+P Collaboratory is working with leading professional associations and STEM improvement efforts to leverage their existing knowledge and experience and to build sustainable strategies for closing the gap. The R+P Collaboratory is developing an online 'Go-To' Resource Center website that houses the resources collected, created, and curated by the Collaboratory. The Resource Center also has significant 'Take-Out' features, with all materials meta-tagged so that they can be automatically uploaded, reformatted, and integrated into the existing communication and professional development mechanisms (e.g., newsletters, digests, conferences, and websites) of a dozen leading professional associations within a Professional Association Partner Network. In light of new and emerging standards in the STEM disciplines, the Collaboratory is focusing its work on four salient and timely bodies of research: (a) STEM Practices, (b) Formative Assessment, (c) Cyberlearning, and (d) Learning as a Cross-Setting Phenomenon. Special emphasis is being placed on research and practice that focuses on the learning of children and youth from communities historically underrepresented in STEM fields.
DATE: -
TEAM MEMBERS: Bronwyn Bevan Joni Falk Philip Bell Bill Penuel Pamela Buffington Barbara Berns
resource project Media and Technology
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.
DATE: -
TEAM MEMBERS: Katie Davis