Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
This essay examines several distinct roles universities play in science communication, with particular reference to professionalisation in the field. It identifies the ways in which universities have facilitated, even driven, that continuing process. But it also notes the potential and actual contradictions between some of the roles of universities, reflecting current developments in higher education across many different contexts.
DATE:
TEAM MEMBERS: Brian Trench
resource research Public Programs
This is an introduction to four essays in a Commentary that examine contributions of universities to science communication’s development but also challenges in consolidating those efforts.
DATE:
TEAM MEMBERS: Brian Trench
resource project Professional Development, Conferences, and Networks
EvaluATE is a national resource center dedicated to supporting and improving the evaluation practices of approximately 250 ATE grantees across the country. EvaluATE conducts webinars and workshops, publishes a quarterly newsletter, maintains a website with a digital resource library, develops materials to guide evaluation work, and conducts an annual survey of ATE grantees. EvaluATE's mission is to promote the goals of the ATE program by partnering with projects and centers to strengthen the program's evaluation knowledge base, expand the use of exemplary evaluation practices, and support the continuous improvement of technician education throughout the nation. EvaluATE's goals associated with this proposal are to: (1) Ensure that all ATE Principal Investigators and evaluators know the essential elements of a credible and useful evaluation; (2) Maintain a comprehensive collection of online resources for ATE evaluation; (3) Strengthen and expand the network of ATE evaluation stakeholders; and (4) Gather, synthesize, and disseminate data about the ATE program activities to advance knowledge about ATE/technician education. The Center plans to produce a comprehensive set of evaluation resources to complement other services, engaging several community college-based Principal Investigators and evaluators in that process.

EvaluATE's products are informed by current research on evaluation, the National Science Foundation's priorities for the evaluation of ATE grants, and the needs of ATE PIs and evaluators for sound guidance that is immediately relevant and usable in their contexts. The fundamental nature of EvaluATE's work is geared toward supporting ATE grantees to use evaluation regularly to improve their work and demonstrate their impacts. All of EvaluATE's products are available to the public. EvaluATE's findings from the annual survey of ATE grantees aid in advancing understanding of the status of technician education and illuminate areas for additional research. The new survey investigates ATE grantees' work to serve underrepresented and special populations, including women, people of color, and veterans. Survey data are available upon request for research and evaluation purposes.
DATE: -
TEAM MEMBERS: Lori Wingate Arlen Gullickson Emma Perk Kelly Robertson Lyssa Becho
resource research Museum and Science Center Programs
The National Autonomous University of Mexico (UNAM) is one of the world's single largest employers of science communicators, with over 350,000 students and 40,000 staff. Its science communication activities include five museums (Universum, Museo de la Luz, the Geology Museum, Museo de la Medicina Mexicana and Musem of Geophysics), botanical gardens, as well as a wide range of cultural and outreach activities. It has several programmes for training professional science communicators. The science communication staff are spread across the campuses in Mexico City and four other cities, including
DATE:
TEAM MEMBERS: Ana Claudia Nepote Elaine Reynoso-Haynes
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Professional Development and Workshops
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Blind youth are generally excluded from STEM learning and careers because materials for their education are often composed for sighted individuals. In this proposed Innovations in Development project, the PIs suggest that spatial acuity is an important element in order for blind persons to understand physical and mental structures. Thus, in this investigation, efforts will be made to educated blind youth in the discipline of engineering. A total of 200 blind students, ages 12-20 along with 30 informal STEM educators will participate in the program. This effort is shared with the National Federation of the Blind, Utah State University, the Science Museum of Minnesota, and the Lifelong Learning Group.

The National Federation of the Blind, in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota will develop a five-year Innovations in Development project in order to broaden the participation of blind students in STEM fields through the development of instruction and accessible tools that assess and improve the spatial ability of blind youth. The partnership with the Science Museum will facilitate the creation of informal science content for students and professional development opportunities for informal educators. Evaluation will be conducted by Lifelong Learning Group of the Columbus Center of Science and Industry. Activities will begin in year one with a week-long, engineering design program for thirty blind high-school students at the Federation of the blind headquarters in Baltimore. Year two will feature two similarly sized programs, taking place at the Science Museum. While spatial ability is linked to performance in science, research has not been pursued as to how that ability can be assessed, developed, and improved in blind youth. Further, educators are often unaware of ways to deliver science concepts to blind students in a spatially enhanced manner, and students do not know how to advocate for these accommodations, leading blind youth to abandon science directions. Literature on the influences of a community of practice on youth with disabilities, as well as nonvisual tools for experiencing engineering, is lacking. This project will advance understanding of how blind people can participate in science, and how spatial ability can be developed and bolstered through informal engineering activities and an existing community of practice.
DATE: -
TEAM MEMBERS: Anil Lewis Wade Goodridge
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Higher Education Programs
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.

This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.
DATE: -
TEAM MEMBERS: Cary Moskovitz
resource project Public Programs
This longitudinal research study will contribute to a broader understanding of the pathways of STEM-interested high school students from underrepresented groups who plan to pursue or complete science studies in their post-high school endeavors. The project will investigate the ways that formative authentic science experiences may support youth's persistence in STEM. The study focuses on approximately 900 urban youth who are high interest, high potential STEM students who participate in, or are alumni of, the Science Research Mentoring Program. This program provides intensive mentoring for high school youth from groups underrepresented in STEM careers. It takes place at 17 sites around New York City, including American Museum of Natural History, which is the original program site. Identifying key supports and obstacles in the pathways of high-interest, under-represented youth towards STEM careers can help practitioners design more inclusive and equitable STEM learning experiences and supports. In this way, the project will capitalize on student interest so that students with potential continue to persist.

In order to understand better the factors that influence these students, this research combines longitudinal social network and survey data with interviews and case studies, as well as an analysis of matched student data from New York City Public Schools' records. The research questions in the study are a) how do youths' social networks develop through their participation in scientists' communities of practice? b) what is the relationship between features of the communities of practice and youths' social networks, measures of academic achievement, and youths' pursuit of a STEM major? and c) what are the variations in youth pathways in relationship to learner characteristics, composition of social networks, and features of the community of practice? The research design allows for a rich, layered perspective of student pathways. In particular, by employing social network analysis, this study will reveal relational features of persistence that may be particularly critical for underrepresented youth, for whom STEM role models and cultural brokers provide an otherwise unavailable sense of belonging and identity in STEM. The study will also access a New York City Public Schools data set comprised of student-level records containing biographical and demographic variables, secondary and postsecondary course enrollment and grades, exam scores, persistence/graduation indicators, linked responses to post-secondary surveys, and post-education employment records and wages. These data enable examination of inter-relationships between in-school achievement and out-of-school STEM experiences through comparison of program participants to similar non-participant peers. This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.
DATE: -
TEAM MEMBERS: Preeti Gupta
resource project Public Programs
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.

Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
DATE: -
resource research Public Programs
Citizen science by youth is rapidly expanding, but very little research has addressed the ways programs meet the dual goals of rigorous conservation science and environmental science education. We examined case studies of youth-focused community and citizen science (CCS) and analyzed the learning processes and outcomes, and stewardship activities for youth, as well as contributions to site and species management, each as conservation outcomes. Examining two programs (one coastal and one water quality monitoring) across multiple sites in the San Francisco Bay Area, CA, in- and out-of-school
DATE: