Skip to main content

Community Repository Search Results

resource project Public Programs
Cañada College will implement the STEM 4 ECE program, which will engage early childhood education (ECE) students in activities to increase their understanding of a comfort with STEM (science, technology, engineering, and math) subjects. Through partnerships with the San Mateo County Office of Education, the Redwood City Public Library, and with ECE and STEM faculty, the program will offer workshops, online tutorials, and one-on-one support to assist ECE students in using library research to incorporate STEM topics in their coursework. The program will also expand the role of the library to serve as a place for interdisciplinary faculty collaboration while providing STEM resources to groups that have historically had limited access to them, specifically in minority communities.
DATE: -
TEAM MEMBERS: Valeria Estrada
resource project Public Programs
The number of Latinos and Native Americans represented in library and information science professions is extremely low. The University of Arizona School of Information Resources and Library Science will address this inequity in its Connected Learning in Digital Heritage Curation project, which focuses on archives and special collections, medical librarianship, and public librarianship. The project will educate 24 culturally competent master’s degree students to serve Latino and Native American communities in the digital world. Students will gain hands-on experience working as graduate assistants with project partners: the University of Arizona Libraries, Center for Creative Photography, Arizona Health Sciences Library, Pima County Public Library, Arizona Historical Society, Arizona State Museum, Labriola National American Indian Data Center, American Indian Film Gallery, Laboratory of Tree-Ring Research and the Arizona State Library, Archives and Public Records.
DATE: -
TEAM MEMBERS: Gina Macaluso
resource project Public Programs
The Detroit Zoo will develop an innovative partnership to help underrepresented students achieve success in STEM (Science, Technology, Engineering, and Math) higher education and careers. The “Learning Classroom—Community of Practice” project will bring together the zoo’s informal educators and STEM content experts with partners at the Detroit Area Pre-College Engineering Program and Oakland University’s School of Education and Human Services in four workshops designed to create a shared language, vision and values around program development and implementation. The group will develop methods for addressing developmental needs of youth while providing science education relating to wildlife conservation and environmental stewardship. They will also build a process for bringing new members into the collaborative with the ultimate goal of delivering large and sustained STEM projects in the metropolitan Detroit area. While focusing on creating a positive impact on STEM achievement and success in Detroit area youth, the project will identify aspects of the process that can be replicable in other regions.
DATE: -
TEAM MEMBERS: Dianne Miller
resource project Professional Development, Conferences, and Networks
The goals of this workshops project are: (1) to provide collaborative professional development opportunities for 24 early professional social science researchers, and science writers and communicators, and (2) to foster a stronger and durable "community of practice" between the fields of science policy research and science communications for the purposes of helping the general public better understand and become engaged with major issues of science and innovation policy. In addition to the PI and co-PI, involved in the work will be: twelve science policy scholars and twelve science communications professionals (writers, bloggers, museum educators, and others); mentors; editors of major science publications; several guest observers from university writing programs around the country; and graduate students who will help document and video record the activities. Project activities include a suite of opportunities: two, four-day workshops; mentorship support; publication in hard copy and online of their articles in a special edition of Creative Nonfiction magazine; and public engagement experiences at Science Cafes around the country. These workshops and accompanying activities will continue to develop a strong foundation for the establishment of nascent collaborations of science policy scholars, science communicators, and informal science education professionals, whose partnerships should position them better to inform and engage the public on important science policy issues of our times.
DATE: -
TEAM MEMBERS: Lee Gutkind David Guston
resource project Media and Technology
In this Connecting Researchers to Public Audiences (CRPA) project, the researchers from Florida State University, in partnership with their local public broadcasting station (WFSU-TV), will engage the audience in an exploration of the ecosystem services of coastal habitats. The main content focus is the important linkages among coastal foundation species (oysters and salt marsh plants), the human and ecological communities they support, and the ecosystem services they provide. In particular, the project illuminates the roles of biodiversity and consume-prey relationships in influencing ecosystem services, while conveying the excitement of ecological research. The complementary target audiences are the general WFSU viewers and listeners, groups that actively use or promote coastal habitats, and graduate students at Florida State University and Florida A&M University. The main deliverables include: 1) a TV documentary, a series of short videos and radio spots; 2) a research blog; and 3) a science communication three-day workshop for current and future researchers to converse with the public about key learning goals. In addition, in year two of the grant, the PIs will deliver a monthly seminar series focused on effective communication skills for scientists. The resulting documentaries will be broadcast by WFSU and offered to other PBS stations via APT and/or NETA. Other materials will be made available via PBS Learning Media and other portals. Community group project collaborators, such as SciGirls and the Science Cafe, will extend the reach and impact of the project. The project design includes formative evaluation which will focus on ways to improve the accessibility and usability of the research blog, and summative evaluation which will review each component of the deliverables. Results of the summative evaluation will be posted on www.informalscience.org. This proposal addresses the communication gap between scientists and the public by simultaneously targeting both audiences with deliverables designed to promote dialogue and understanding. By highlighting compelling natural history information and key ecological concepts associated with current research, the project will provide engaging educational experiences to a wide audience. These activities will not only educate the public about specific research but also demonstrate the process of science. Finally, the proposed seminar for students, along with the other informal learning opportunities throughout the project, will enhance the communication skills and outreach abilities of a diverse group of graduate students.
DATE: -
TEAM MEMBERS: Randall Hughes David Kimbro Roberto Diaz de Villegas
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource project Public Programs
Earth Partnership: Indigenous Arts and Sciences (EP) will develop and refine a model for integrating Indigenous and informal and formal K-20 educators in ecological restoration, project-based learning and professional development. EP will involve participants in Native habitat restoration on community spaces, school grounds and nearby natural areas as a context for intergenerational STEM learning across age, ecosystem, discipline, learning style, culture and place. EP integrates Native knowledge and core values including relationship, reciprocity, respect and responsibility with Western STEM concepts and processes. The project will integrate the expertise of university social, physical, life and learning scientists and community and tribal practitioners to design, develop and test informal STEM learning incorporating ecological restoration, citizen science and cultural diversity. EP grows out of a teacher professional development model funded by NSF and is a network that now includes participating individuals and organizations from many states. This network will enhance dissemination and provide a foundation for a larger project growing out of the results of this project. EP will build capacity of Native and non-Native informal educators and citizens to work together to generate engagement among young people and adults with ecological STEM learning and stewardship. The approach will integrate culturally authentic resources, inquiry and citizen science process skills (e.g., data collection, analysis, ecological restoration, water stewardship) in multiple learning settings. Stronger multicultural, intergenerational and community partnerships will be supported to restore aquatic and terrestrial habitats through community-based stewardship projects and Service Learning. Through EP, Native youth will be encouraged to explore STEM careers that will meet future workforce needs for managing tribal resources and become knowledgeable citizens able to use critical thinking and analysis of STEM-related issues in their communities. The project will use a developmental evaluation approach to assess project planning processes and outcomes of educational programs.
DATE: -
TEAM MEMBERS: Cheryl Bauer-Armstrong Naomi Tillison Maria Moreno Delores Gokee-Rindal
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
DATE:
TEAM MEMBERS: Edwin Obergfell Philip Villamor
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. This project seeks to improve public engagement in climate communication by broadcast meteorologists, using scientific methods to identify probable causes for their skepticism and/or reticence, and to test the efficacy of proposed solutions.
DATE:
TEAM MEMBERS: P. Thompson Davis
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource research Media and Technology
The Universidad Nacional Autónoma de México (UNAM), as an active cultural promoter, implemented a virtual museum system in order to help and develop expression related to art, science and humanities. The UNAM's cultural heritage is, as in many other universities, a vast number of different kinds of objects, ranging from painting and sculpture to numismatics and architecture, from traditional art to modern multimedia-based exhibits to Scientific Collections. It is impossible to exhibit it all in a single place in an orderly fashion. The Virtual Museum of the University's Cultural Heritage
DATE:
TEAM MEMBERS: Francisco Caviedes Esther de la Herran Andrea Vitela A. Libia Cervantes Jose Mondragon Alma Rangel Jose Silva Ildiko Pelczer Francisco Salgado Adidier Perez-Gomez Carolina Flores-Illescas Jose Casillas Graciela de la Torre Jorge Reynoso Rafael Samano Julia Molinar Jose Manuel Magana Alejandrina Escudero Ariadna Patino