Skip to main content

Community Repository Search Results

resource project Media and Technology
Black girls display high interest, confidence and ability in STEM but face multiple barriers including racial, ethnic and gender stereotypes, low exposure to STEM role models, low awareness of diverse STEM fields and financial obstacles to STEM education. It is critical to infuse STEM education with specific and intentional culturally responsive and anti-racist strategies to attract and retain Black girls in STEM. Through this combination of media, role modeling and outreach, Black SciGirls will help increase access to STEM education for Black girls, preparing them for future workforce participation. This project will study the impacts on elementary/middle school Black girls’ exposure to early career Black female STEM professionals as role models. Deliverables include 1) professional development for STEM educators and Black STEM professional women to prepare them to lead STEM programs for girls 2) a PBS series of role model videos of early-career Black STEM professionals and 3) a research study that examines how/if in person and media-based STEM role models increase Black girls’ interest and confidence in STEM, motivation to pursue future STEM studies, and STEM identity. While women make up 47% of the U.S. workforce, they are underrepresented in STEM and only 1.6% are Black women.

The research study will examine how educators’ use of role models addresses a critical barrier for Black girls, seeing women in STEM who look like them. The research study questions are: How and in what ways do Black STEM women role models influence Black girls’ interest in STEM? How and to what extent do role models report changes in their confidence and ability to engage girls in STEM as a result of training in best practices in role modelling? and, How and to what extent are parents engaged in supporting girls’ involvement in STEM, as a result of the participation of role models? The research team will visit participating local SciGirls programs to collect qualitative data, including observations of program activities, interviews, and focus groups. To ensure reliable outcomes and utilize robust theoretical underpinnings, the research will combine pre/post survey data and an in-depth cross-case studies employing qualitative and quantitative data collection. This mixed-methods approach will enable gathering data that comprehensively offers insight into Black girls’ STEM experiences and those of the Black STEM professional women role models and parents who support them. Qualitative data that centers girls’, role models’, and parents’ perspectives will contribute to this identity-centered study. A culturally responsive evaluation will determine the extent to which the project builds educators’ ability to integrate equitable and anti-racist practices to build Black girls’ interest and confidence in STEM studies.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Rita Karl Angel Miles Nash Ronda Bullock Adrienne Stephenson Lataisia Jones
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This pilot and feasibility project addresses the needs of youth (ages 10-19) who are deaf or hard of hearing and use either English or American Sign Language as their preferred method of communication. The project will develop and study video stories from members of the STEM workforce who are deaf or hard of hearing. Youth will view these videos on the web at home or at an afterschool program. These stories will help the youth become aware of the range of STEM careers that are available and their potential to pursue and succeed in these occupations. One of the biggest challenges young persons who are deaf or hard of hearing face is not having role models who are members of the STEM workforce. Without these role models they are not aware of the possibility that they could work in these fields. Several studies indicate that seeing other people with disabilities having success in STEM boosts self-confidence. Exposure to deaf role models allows deaf student to identify with successful deaf people and consequently believe they themselves could accomplish goals they previously thought out of their reach. Project collaborators include Gallaudet University Regional Center, Northeast Deaf & Hard of Hearing Service, Boys & Girls Club of Lynn, MA, and Bridge Multimedia.

The project will advance knowledge in the field of deaf education in informal settings. The research questions are: 1) How do adolescents who are deaf or hard of hearing integrate and use digital versions of firsthand stories from members of the STEM workforce? 2) How do parents and club leaders make use of the stories? 3) What kind of outcomes are made possible by using the stories such as interest in STEM careers 4) What modifications and additional would improve the stories to make them more useful and effective? 5) What dissemination strategies would maximize story use? The project will do a formative evaluation of the pilot videos using a sample of 30 family groups and 10 boys? and girls? participants. Families will meet with researchers at one of the collaborating institutions (Gallaudet University Regional Center East, Northeast Deaf & Hard of Hearing Service or TERC) depending on where they live. The researcher will work with one family or adolescent at a time. They will view the videos on a computer while the researchers observe and record data. After viewing the videos, researchers will ask them questions about what they learned, what might be added, changed, or improved. They will be asked to look at the videos later on their home computers and do things such as select a STEM career for further research. Additional data collection will involve completing a post-use online survey for adolescents and their parents.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Vesel
resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Media and Technology
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.

Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.

PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.

NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
DATE: -
TEAM MEMBERS: Patti Parson Leah Clapman
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood
resource project Media and Technology
Women continue to be underrepresented in computer science professions. In 2015, while 57% of professional occupations in the U.S. were held by women, only 25% of computing occupations were held by women. Furthermore, the share of computer science degrees going to women is smaller than any STEM field, even though technology careers are the most promising in terms of salaries and future growth. Research suggests that issues contributing to this lack of computer science participation begin early and involve complex social and environmental factors, including girls' perception that they do not belong in computer science classes or careers. Computer science instruction often alienates girls with irrelevant curriculum; non-collaborative pedagogies; a lack of opportunities to take risks or make mistakes; and a heavy reliance on lecture instead of hands-on, project-based learning. Computer science experiences that employ research-based gender equitable best practices, particularly role modeling, can help diminish the gender gap in participation. In response to this challenge, Twin Cities PBS (TPT), the National Girls Collaborative (NGC) and Code.org will lead Code: SciGirls! Media for Engaging Girls in Computing Pathways, a three-year project designed to engage 8-13 year-old girls in coding through transmedia programming which inspires and prepares them for future computer science studies and career paths. The project includes five new PBS SciGirls episodes featuring girls and female coding professionals using coding to solve real problems; a new interactive PBSKids.org game that allows children to develop coding skills; nationwide outreach programming, including professional development for informal educators and female coding professionals to facilitate activities for girls and families in diverse STEM learning environments; a research study that will advance understanding of how the transmedia components build girls' motivation to pursue additional coding experiences; and a third-party summative evaluation.

Code: SciGirls! will foster greater awareness of and engagement in computer science studies and career paths for girls. The PBS SciGirls episodes will feature girls and female computer science professionals using coding to solve real-world challenges. The project's transmedia component will leverage the television content into the online space in which much of 21st century learning takes place. The new interactive PBSKids.org game will use a narrative framework to help children develop coding skills. Drawing on narrative transportation theory and character identification theory, TPT will commission two exploratory knowledge-building studies to investigate: To what extent and how do the narrative formats of the Code: SciGirls! online media affect girls' interest, beliefs, and behavioral intent towards coding and code-related careers? The studies aim to advance understanding of how media builds girls' motivation to pursue computer science experiences, a skill set critical to building tomorrow's workforce. The project team will also raise educators' awareness about the importance of gender equitable computer science instruction, and empower them with best practices to welcome, prepare and retain girls in coding. The Code: SciGirls! Activity Guide will provide educators with a relevant resource for engaging aspiring computer scientists. The new media and guide will also reside on PBSLearningMedia.org, reaching 1.2 million teachers, and will be shared with thousands of educators across the SciGirls CONNECT and National Girls Collaborative networks. The new episodes are anticipated to reach 92% of U.S. TV households via PBS, and the game at PBSKids.org will introduce millions of children to coding. The summative evaluation will examine the reach and impact of the episodes, game and new activities. PIs will share research findings and project resources at national conferences and will submit to relevant publications. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Rebecca Osborne Barbara Flagg
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will fill a major gap in knowledge regarding why children listen to science podcasts and what impact they have on their STEM learning. Brains On! is an existing podcast for children 6-12 years old that is produced by American Public Media. The podcasts are kid-driven. Kid listeners send in questions and suggest the show topics. Every episode is co-hosted by a different child, who interviews top scientists about their work, sees research done first hand and helps shape the overall arc of the episode. The project team collaborates with a wide variety of scientists to create programming that is both appealing to kids and has scientific merit. Although Brains On! has enjoyed more than 2.4 million downloads collectively of its 50-episode library little is known about why children are drawn to it, how they are using its content, and what the impacts might be for those who listen to the podcast. There has been no previous research to understand why children choose to listen, or what impact it has on their learning. This Pathways project would produce new episodes and collaborate with the Science Museum of Minnesota that would conduct research to fill this large gap in understanding aural learning through podcasts. The Brains On! project has the following goals to create strategic impact: 1) explore and begin to develop knowledge around what makes children's science podcasts, such as Brains On!, appealing and what role they can play in impacting children and their families' science curiosity, learning, and awareness of science careers, and 2) develop a theory of action for the Brains On! podcast that could also inform the development of similar kinds of children's science podcasts. A mixed-methods exploratory research study will be carried out to address these goals. The three overarching research questions are: Who is the audience for Brains On! and what are their motivations for listening to science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? The research results, including the theory of action, from the Brains On! exploratory study will benefit the fields of informal science education and public media by beginning to fill a gap in the current knowledge-base around the potential for science children's podcasts to contribute to a wide range of informal science learning outcomes for children and families, as well provide insight into what features of children's science podcasts can lead to those outcomes. The study results may also encourage other public media and informal science education organizations to create their own science podcasts for children, increasing the reach and potential impact of this emerging STEM media resource.
DATE: -
TEAM MEMBERS: Molly Bloom Sanden Totten Lauren Dee Marc Sanchez Amy Grack Nelson