Skip to main content

Community Repository Search Results

resource project Public Programs
Chicago's DuSable Museum of African American History will develop and present the "Exploration of African American Physicians and Surgeons" project with an overall goal to expose young people in the community to the opportunities and benefits of STEM education. Project components will include educational programming, lectures, and an historical exhibition revolving around African American contributions and achievements within the world of medicine. The exhibition will focus on work of Dr. Daniel Hale Williams, the founder of Chicago's Provident Hospital, the first non-segregated hospital in the United States. Dr. Williams was the first general surgeon to perform a documented and successful pericardium surgical procedure to repair a wound. The project's educational programming will explore the ways in which other African American doctors broke down racial barriers within the field of medicine.
DATE: -
TEAM MEMBERS: Cecil Lucy
resource evaluation Public Programs
The National Building Museum contracted RK&A to conduct an evaluation Investigating Where We Live (IWWL), a long-running program that has brought together creative youth in the Washington, D.C. area every summer since 1996 to explore, document, and interpret the local built environment. The study goal was to examine program strengths and challenges to help NBM strategically plan for the program’s future. How did we approach this study? To hear a variety of perspectives on the program, RK&A conducted in-depth telephone interviews with a number of stakeholders with different
DATE:
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood
resource research Public Programs
This article provides an overview of the Chief Science Officer program launched in 2015 by Arizona SciTech. Students vote for one of their peers to become a STEM advocate in their school. These Chief Science Officers select and promote STEM programming, connect with STEM organizations to bring STEM programming to their communities, or participate in local and state conversations on education and the workforce.
DATE:
TEAM MEMBERS: Jeremy Babendure Nagib Balfakih Susan Farretta Becky Hughes
resource project Professional Development, Conferences, and Networks
Aligning for Impact: Computer Science Pathways Across Contexts [CS-PAC] is an NSF INCLUDES Design and Development Launch Pilot. It broadens participation of students who are underrepresented in computer science by using the convening and policy-making power of the Georgia State Department of Education to coalesce school district leaders to implement K-12 computer science education. The project provides a national model for how to work toward systemic change. With the State Department of Education's coordination, several school districts will collaboratively seek improvements in their own student participation rates. The coordination of data reporting and analysis, resources, communications, and policy promote more equitable participation in computer science education. Research emerging from this project informs other states about how to collaboratively shape computer science education policy and policy implementation.

Using a Collective Impact approach to systemic change, the project creates sustainable institutional change at the community, state, and national levels. Qualitative and quantitative data provide descriptions about how to utilize alignment strategies within Collective Impact in three different contexts: rural, suburban, and urban. Outcomes utilize a regression discontinuity analysis to justify successful implementation as well as qualitative analysis of implementation efforts that were deemed most effective by all stakeholders. The project outputs directly affect over 88,000 students across five districts and indirectly affect over 1.7 million in Georgia alone. The culminating project goal is the development of a coherent framework for aligning K-12 computer science education pathways.
DATE: -
TEAM MEMBERS: Caitlin Dooley Bryan Cox Shawn Utley
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This study will capitalize on the increased availability and affordability of immersive interactive technologies, such as Augmented Reality devices and virtual characters, to investigate their potential for benefitting STEM learning in informal museum contexts. This project will combine these technologies to create an Augmented Reality experience that will allow middle-school youth and their families to meet and assist a virtual crew on a historic ship at the Independence Seaport Museum in Philadelphia. The players in this game-like experience will encounter technologies from the turn of the 20th century, including steam power, electricity, and wireless communication. Crew members and technologies will be brought to life aboard the USS Olympia, the largest and fastest ship in the US Navy launched in 1892. The historic context will be positioned in relation to current day technologies in ways that will enable a change in interest towards technology and engineering in middle school-age youth. This will result in a testbed for the feasibility of facilitating short-term science, technology, engineering and mathematics (STEM) identity change with interactive immersive technologies. A successful feasibility demonstration, as well as the insights into design, could open up novel ways of fostering STEM interest and identity in informal learning contexts and of demonstrating the impact of this approach. The potential benefit to society will rest in the expected results on the basic science regarding immersive interactive technologies in informal learning contexts as well as in demonstrating the feasibility of the integrated approach to assessment.

This project will use a living lab methodology to evaluate interactive immersive technologies in terms of their support for STEM identity change in middle-school age youth. The two-year design-based research will iteratively develop and improve the measurement instrument for the argument that identity change is a fundamental to learning. A combination of Augmented Reality and intelligent virtual agents will be used to create an interactive experience--a virtual living lab--in an informal museum learning exhibit that enables change interests towards technology and engineering and provides short-term assessment tools. In collaboration with the Independence Seaport Museum in Philadelphia, the testbed for the approach will be an experience that brings to life the technologies of the early 20th century aboard a historic ship. Through the application of Participatory Action Research techniques, intelligent virtual agents interacting with youth and families will customize STEM information relating to the ship's mission and performance. Topics explored will make connections with current day technologies and scientific understanding. Mixed-methods will be used to analyze interactions, interview and survey data, will form the basis for assessing the impact on youth's STEM interests. The elicitation method specifically includes assessment metrics that are relevant to the concept of learning as identity change. This assessment, through immersive interactive technologies, will target the priority areas of engagement in STEM as well as the measurement of outcomes.
DATE: -
TEAM MEMBERS: Stefan Rank Ayana Allen Glen Muschio Aroutis Foster Kapil Dandekar