Skip to main content

Community Repository Search Results

resource project Exhibitions
The Adirondack Museum at Blue Mountain Lake, New York will develop Mining in the Adirondacks, a multi-faceted project that will include a 29,000 square foot permanent exhibit, an interactive web site module, curriculum development, and public programming. The exhibition will feature approximately 300 objects from the Adirondack Museum collection, including a tuyere plate, miners’ safety gear, picks and drills, historic photographs, an ore cart, maps, iron pigs, garnet jewelry, household items and audio recordings. A mining tunnel, open pit and mine village landscape will be incorporated to provide an immersive experience for visitors. The Mining in the Adirondacks project seeks to interpret the history of mining in the Adirondack wilderness grounded in current scholarship, best museum practice, visitor studies research, and understanding of varied learning styles. Four humanities scholars will work with museum staff.
DATE: -
TEAM MEMBERS: Laura Rice
resource project Media and Technology
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE: -
TEAM MEMBERS: Katherine Perkins Daniel Schwartz Michael Dubson Noah Podolefsky
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman
resource project Media and Technology
The ScratchEd project, led by faculty at the Massachusetts Institute of Technology and professionals at the Education Development Center, is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind. The effectiveness of the ScratchEd project is being evaluated by research addressing four specific questions: (1) What are the levels of teacher participation in the various ScratchEd PD offerings and what do teachers think of these experiences? (2) Do teachers who participate in ScratchEd PD activities change their use of Scratch in classroom instruction to create design-based learning opportunities? (3) Do the students of teachers who participate in the ScratchEd PD activities show evidence of developing an understanding of computational thinking concepts and processes? (4) When the research instruments developed for the evaluation are made available for teachers in the Scratch community to use for self-evaluation, how do teachers make use of them? Because both computational thinking and design-based instruction are complex activities, the project research is using a combination of survey, interview, and artifact analysis methods to answer the questions. The ScratchEd professional development and research work will provide important insight into the challenge of helping teachers create productive learning environments for development of computational thinking. Those efforts will also yield a set of evaluation tools that can be integrated into the ScratchEd resources and used by others to study development of computational thinking and design-based instruction.
DATE: -
TEAM MEMBERS: Mitchel Resnick