Skip to main content

Community Repository Search Results

resource research Public Programs
Reports from the NSF, NRC, AAAS, and others urge over and over that we must teach "science as science is done," that "science is a way of knowing," that our goal should be to impart "scientific habits of mind," and that learning must be learner-centered and oriented toward process. Fine. But what does this really mean for science education, and especially laboratory education?
DATE:
TEAM MEMBERS: Jane Maienschein
resource research Public Programs
The purpose of this paper is to examine the role of laboratory-based science from a perspective that synthesizes developments in (1) science studies, e.g., history, philosophy and sociology of science and (2) the learning sciences, e.g., cognitive science, philosophy of mind, educational psychology, social psychology, computer sciences, linguistics, and (3) educational research focusing on the design of learning environments that promote dynamic assessments. Taken together these three domains have reshaped our thinking about the role inquiry, and in turn the laboratory, has in science
DATE:
TEAM MEMBERS: Richard Duschl
resource research Public Programs
This paper explores the role of laboratory and field-based research experiences in secondary science education by summarizing research documenting how such activities promote science learning. Classroom and field-based "lab work" is conceptualized as central components of broader scientific investigations of the natural world conducted by students. Considerations are given to nature of professional scientific practice, the personal relevance of student's understanding of the nature of empirical scientific research, and the role of technology to support learning. Drawing upon classroom learning
DATE:
TEAM MEMBERS: Philip Bell
resource research Public Programs
The goal of this article is to provide an integrative review of research that has been conducted on the development of children's scientific reasoning. Scientific reasoning (SR), broadly defined, includes the thinking skills involved in inquiry, experimentation, evidence evaluation, inference and argumentation that are done in the service of conceptual change or scientific understanding. Therefore, the focus is on the thinking and reasoning skills that support the formation and modification of concepts and theories about the natural and social world. Major empirical findings are discussed
DATE:
TEAM MEMBERS: Corrie Zimmerman
resource research Informal/Formal Connections
This paper will review literature on learning science in K-8 classrooms by asking and answering three major questions: Who learns science in classrooms? How is science learned in classrooms? What science is learned in classrooms? These questions will be addressed from a sociocultural perspective, which means that the unit of analysis (both theoretically and methodologically) should include both the individual and the social world. Thus, the proposed connections between causes and outcomes must include contextual as well as psychological factors.
DATE:
TEAM MEMBERS: Ellice Forman Wendy Sink
resource research Public Programs
The purpose of this paper is to review what is known about informal science learning and to recommend areas for further research. The review is intended to support an examination of how children's science learning experiences in designed informal environments like science museums and zoos relate to science learning activities in K-8 schools.
DATE:
TEAM MEMBERS: Kirsten Ellenbogen Reed Stevens
resource research Informal/Formal Connections
To begin, this paper describes the climate in science education in the United States, and describes and defines formative assessment. Next, Black & Wiliam’s review and two other important empirical studies will be summarized. Then, a framework characterizing different forms of formative assessment is presented. Non-empirical studies are organized according to this continuum. Finally, the paper describes limitations in the implementation of formative assessment in K-8 science, and summarizes assessment practices that show promise for improving student learning. The important contribution of the
DATE:
TEAM MEMBERS: Erin Furtak
resource research Media and Technology
The media are the most pervasive disseminators of informal science education in this country. Watching commercial and non-commercial television will provide you with information on alligators or zygotes, bio-fuels or stem cells, polar bears or hurricanes. Radio, too, provides discussions of genetics and global warming and birds and stars. Often radio and television will cover science issues with a contextual overlay of politics or morality, so viewers and listeners can sense how they and their community relate to it. But for excitement, going to the theater to see an IMAX movie will take you
DATE:
TEAM MEMBERS: Saul Rockman Kristin Bass Jennifer Borse
resource research Media and Technology
Technological literacy is essential to ensure lifelong engagement in rapidly changing societies. Three factors that affect learning in later adulthood are age-related declines in processing new information, changes in motivation and reprioritization of emotional wellbeing over new learning, and the ways in which beliefs and stereotypes influence motivation and learning.
DATE:
TEAM MEMBERS: Casey Lindberg Edwin Carstensen Laura Cartsensen
resource research Media and Technology
This paper lays out a theory of (re-)generative learning to explain how families and communities socialize young learners into thinking like scientists and mathematicians. Cultural communities and their families orient their young in varied ways toward the language, behaviors, and self-theories about the future presupposed in the learning of science and mathematics. Certain socialization processes and norms correspond closely with those that scientists and artists use in laboratories, studios, and rehearsals. Certain norms of politeness and patterns of language differ significantly from habits
DATE:
TEAM MEMBERS: Shirley Heath
resource research Public Programs
What makes “making”—the next generation of inventing and do-it-yourself—worth paying attention to? In this report, we explore the three categories of makers, the ecosystem growing around those categories, the role technology plays in this ecosystem, and, finally, how business can take advantage of the opportunities this movement represents.
DATE:
TEAM MEMBERS: John Hagel John Seely Brown Dleesha Kulasooriya
resource research Media and Technology
How can research on teaching and learning be used to improve the design of e-content? The contents of this report are based on a series of seminars conducted during 2003 and 2004, funded by the Economic & Social Research Council (ESRC), that were coordinated by Lydia Plowman, University of Stirling. They were also sponsored by a number of organisations including Futurelab. Each seminar was attended by researchers from universities, creators and managers of companies that make educational resources, and people engaged in policy making or representing Government agencies
DATE:
TEAM MEMBERS: Lydia Plowman