Skip to main content

Community Repository Search Results

resource project Media and Technology
Lawrence Berkeley Labs developed a CD containing educational materials, staff training and the software necessary for informal science education centers to offer to middle school students one- hour sessions, multiple-day workshops, and ongoing participation in a drop-in computer lab. Hands-On Universe (HOU) is an active science education program that provides participants access to observing time on professional telescopes through the use of a personal computer and the Internet. The CD contains: exploration experiences and challenge games; resource material including images from other national labs, descriptions and animations of related topics, and astronomical catalogs; image processing software; a telecommunications package to interface with HOU telescopes and support network, the Internet, and World Wide Web; staff training material. The target audiences are youth in grades three through high school, and adults.
DATE: -
TEAM MEMBERS: Carlton Pennypacker
resource project Media and Technology
This Phase I SEPA proposal supports a consortium of science and education partners that will develop System Dynamics (SD) computer models to illustrate basic health science concepts. The consortium includes Oregon Health Sciences University (OHSU), Portland Public Schools (PPS), Saturday Academy, and the Portland VA Medical Center. SD is a computer modeling technique in which diagrams illustrate system structure and simulations illustrate system behavior. Desktop computers and commercial software packages allow SD to be applied with considerable success in K-12 education. NSF grants to Portland Public Schools have trained over 225 high school teachers in Portland and surrounding areas. Two magnet programs have been established with an emphasis on systems and at least five other schools offer significant systems curriculum. Major components of this project include (1) Annual summer research internships at OHSU for high school teachers and high school students, (2) Development of SD models relevant to each research project, (3) Ongoing interactions between high school science programs and OHSU research laboratories, (4) Development of curriculum materials to augment the use of the SD model in the high school classroom or laboratory setting, and (5) Development of video materials to support the classroom teacher. Content will focus on four fundamental models: linear input/exponential output, bi-molecular binding (association/dissociation), population dynamics, and homeostasis. Each of these models is very rich and may be extended to a broad variety of research problems. In addition these models may be combined, for example to illustrate the effect of drugs (binding model) on blood pressure (homeostasis model). System Dynamics is an exemplary tool for the development of materials consistent with National Science Education Standards. SD was specifically developed to emphasize interactions among system structure, organization, and behavior. Students use these material as part of inquiry-based science programs in which the teacher serves as a guide and facilitator rather than the primary source of all content information; technical writing by students is also encouraged. Finally, these SD materials will provide a coherent body of work to guide the ongoing professional development of the classroom science teacher.
DATE: -
TEAM MEMBERS: Edward Gallaher
resource project Media and Technology
We propose to leverage the power of the Internet and the appeal of on-line gaming environments for middle school students to create a new type of learning resource in science. Case histories of medical discovery will be transformed into "problem- based" multimedia mysteries for students to solve. Through prior research we have developed and field tested a working model for an adventure series that engages middle school students. We propose to extend the model to new content. Assuming the on-line role of a Reconstructor who seeks lost medical knowledge from the past, students will unravel the origins of specific diseases or medical discoveries. The learning objectives for each episode will be multidisciplinary. The goal is to engage students in constructing their own knowledge by participating in virtual experiments, by helping them establish a context for the discoveries, and by understanding issues involved in forming public health policy. An experienced team representing medicine, biology, history of science, education, and information technology will oversee the project, assuring the integrity of the site content, and incorporating cutting edge technology. A process of iterative prototyping, focusing heavily on teachers and students will be employed to make the resource site exciting, educational, and useful in classrooms, in homes, and in museums. The field tests will be conducted in schools, representing a cross-section of the community, assuring appropriate presentation of materials to target populations.
DATE: -
TEAM MEMBERS: Leslie Miller Janice Mayes