Skip to main content

Community Repository Search Results

resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource project Media and Technology
This project will establish a new spherical display system exhibit. The Hatfield Marine Science Visitor Center (Newport, Oregon) will acquire and install a 3 ft. Magic Planet as part of a larger interactive data visualization exhibit. Pacific Northwest regional data sets will complement NOAA global data to serve as a model education program. Specific focus areas include coastal climates, hypoxia/dead zones, algal blooms, and/or aquatic invasive species. The Principle Investigator for this project have unique expertise in K-12 education, teacher professional development, curriculum development and evaluation, particularly in free-choice learning environments.
DATE: -
TEAM MEMBERS: Nancee Hunter
resource project Media and Technology
Through this award, the North Carolina Aquarium on Roanoke Island (NCARI) has installed NOAA's Science on a Sphere (SOS) to enhance and expand their existing Storms exhibit. NCARI's location on the Outer Banks makes understanding ocean systems critically important. Installing SOS increases environmental literacy by exposing NCARI's 300,000 annual visitors to NOAA datasets and information. Additionally, through educational programming students, teachers, and visitors obtain current and accurate information to help them make better-informed decisions. Workshops hosted at NCARI have provided valuable professional development opportunities for both informal educators and NOAA staff.
DATE: -
TEAM MEMBERS: Andrea Hitt
resource project Media and Technology
The University of California, Berkeley's Lawrence Hall of Science (LHS), in partnership with the Bishop Museum in Honolulu, HI, propose to develop and evaluate curriculum-based content modules for spherical display systems. These modules will combine successful research-driven curriculum materials with the compelling nature of a spherical display to engage and inform museum visitors in the process of observing and interpreting patterns of global climate data.
DATE: -
TEAM MEMBERS: Barbara Ando
resource project Media and Technology
The Smithsonian National Zoological Park (SNZP) in Washington, DC is integrating the NOAA Science on a Sphere(SOS) spherical display system into SNZP's Amazonia Science Gallery (ASG). The SOS system at ASG will be seen in person by tens of thousands of visitors each year and potentially by millions more through electronic outreach programs. The SOS system will become an integral part of the exhibit and will be used for both informal and formal science education programs at the National Zoo.
DATE: -
TEAM MEMBERS: Miles Roberts
resource research Media and Technology
The National Science Foundation (NSF) supports the most meritorious ideas submitted as proposals from researchers and educators in all fields of science, technology, engineering, and mathematics (STEM). Creating opportunities and developing innovative strategies to broaden participation among diverse individuals, institutions, and geographic areas are critical to the NSF mission of identifying and funding work at the leading edge of discovery. The creative engagement of diverse ideas and perspectives is essential to enabling the transformative research that invigorates our nation’s scientific
DATE:
TEAM MEMBERS: National Science Foundation
resource project Media and Technology
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.

Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.

These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE: -
TEAM MEMBERS: Richard Ladner Libby Cohen Sheryl Burgstahler William McCarthy
resource research Media and Technology
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
DATE:
TEAM MEMBERS: Sebastian Martin Modesto Tamez
resource evaluation Media and Technology
Earth & Sky (E&S) is a short-format science radio series airing daily on more than 1,000 commercial and public radio stations and translators in the U.S. as well as on satellite and Internet radio outlets. The series is also widely heard beyond U.S. borders. Produced by a small non-profit, Earth & Sky, Inc. of Austin, TX, the series is hosted by Deborah Byrd and Joel Block and consists of 90-second programs on a wide variety of topics mostly drawn from environmental sciences, earth sciences and astronomy but also including emerging technologies like nanotechnology. Over the previous three
DATE:
TEAM MEMBERS: Barbara Flagg
resource project Media and Technology
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
DATE:
TEAM MEMBERS: Karen Leathem Douglas Meffert
resource project Media and Technology
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE: -
TEAM MEMBERS: Mitchel Resnick John Maeda Yasmin Kafai
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy