Skip to main content

Community Repository Search Results

resource project Media and Technology
The Tech Museum of Innovation (The Tech) in San Jose, California proposes to partner with NOAA to integrate Science On a Sphere (SOS) into The Tech's Exploration gallery and to facilitate the development of informal and formal learning programs. Exhibits and programs at The Tech focus on the integration of emerging technologies into hands-on visitor experiences. In 2004, The Tech partnered with NOAA, the Maryland Science Center (MSC), and a consortium of national science centers to explore the potential and effectiveness of SOS as a method of engaging and informing the general public about NOAA-related sciences. Initial testing of SOS at the Maryland Science Center revealed that SOS is a visually compelling and engaging medium for conveying complex scientific information to museum visitors. Ninety-eight percent of visitors tested regarded a facilitated SOS program as a good or excellent experience with strong visitor retention suggesting the potential of SOS as a compelling visitor tool. However, when the experience was not facilitated this retention dropped dramatically. Support from NOAA will enable The Tech to test SOS and NOAA data in a number of formats to determine the most effective ways to utilize this incredible technology. The results of this evaluation will be shared with other museums using SOS to improve its reach in teaching informal audiences and promoting interest in both STEM content and NOAA research. The SOS exhibit will bring together scientists, technologists, informal education specialists, and young users to unlock the educational potential of NOAA's datasets and further NOAA's educational plan. Hands-on experiences using SOS will engage visitors in meaningful explorations of NOAA data. The Tech Museum will make SOS accessible to people of all ages, backgrounds, and educational levels. All panel text, audio, and captions will be presented in both English and Spanish to allow greater accessibility for local audiences. SOS will provide the programming platform upon which to explore the educational opportunities of this gallery as it illustrates how data collected with remote sensing technologies is helping us understand and make predictions about our dynamic environment and the future of our planet. SOS will illustrate how these data collecting technologies assist us in developing our knowledge about our planet and its solar system.
DATE: -
TEAM MEMBERS: Greg Brown
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource research Media and Technology
Computer-supported collaborative learning (CSCL) is an emerging branch of the learning sciences concerned with studying how people can learn together with the help of computers. As we will see in this essay, such a simple statement conceals considerable complexity. The interplay of learning with technology turns out to be quite intricate. The inclusion of collaboration, computer mediation, and distance education has problematized the very notion of learning and called into question prevailing assumptions about how to study it.
DATE:
TEAM MEMBERS: Gerry Stahl Timothy Koschmann Dan Suthers
resource research Public Programs
This essay begins by considering museum studies in relationship to curriculum studies and new museology. The author notes that traditional museum and school learning modes have focused more on measurement than meaning, while curriculum studies and new museology urge a broader exploration of the social purposes of education. Drawing on the work of Myles Horton and the Highlander Folk School, popular education is offered as a model for exhibitors and other museum educators. The essay closes with examples from an exhibit project by graduate students. This section shares analyses of traditional
DATE:
TEAM MEMBERS: Therese Quinn
resource research Public Programs
Museum education is a field of practice that is guided effectively by traditions of practice addressing museums' purposes and expected audiences, and rarely explicitly refers to the numerous models of curriculum theory that are available to guide educational practice in the school setting. But curriculum models can be useful both for describing the purposes of museum programs and for assessing their outcomes. This article reviews some longstanding models of curriculum purpose, and proposes to bring one of them, four decades old, back into comon parlance for assessing the qualities of museum
DATE:
TEAM MEMBERS: Elizabeth Vallance
resource research Public Programs
This report presents the findings of a qualitative study that asked 38 secondary science teachers, ‘How can natural history museums effectively support science teaching and learning?’ A partnership of four natural history museums across England, teachers from their local areas and a university education department were involved. The museums work in partnership to support school science at 11–18. In-depth focus groups held at the museums and questionnaires were used.
DATE:
TEAM MEMBERS: Sally Collins Andy Lee
resource research Public Programs
The article focuses on the creation and development of an interactive science museum by middle level students as part of informal science education in the U.S. The said project which primarily targets fifth-grade students aimed at maximizing the active engagement of a learner during his or her experience. It also promotes the minimization of lecture-laden instruction while maximizing an experience-based learning system. The project which is adopted in the late part of 2006 help students to review and synthesize information, collaborate with peers, and specialize science topics.
DATE:
TEAM MEMBERS: Jeff Marshall
resource research Public Programs
This article is a report of the impact assessment of two outreach programs to primary schools run by the Botswana National Museum. The oldest of the programs, Zebra-on-Wheels was officially launched in 1980 and has involved all the primary schools in the country at least twice. The study aimed to establish the impact of the two programs and make recommendations for possible improvements. Thirty-eight schools throughout Botswana participated in the study. Teachers in these schools were interviewed and classroom observation sessions were carried out. Teachers’ observations about the two programs
DATE:
TEAM MEMBERS: Thatayamodimo Sparks Rammapudi
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE: -
TEAM MEMBERS: Vivian Altmann Darlene Librero Virginia Witt Michael Funk
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Public Programs
The importance of reporting current science to the general public is more important now than ever before. The best way to ensure enthusiastic support for science is to engage the general public as directly as possible. Unlike schooling, learning in a museum is self-motivated, self-directed, and can be lifelong. The partnership between Columbia University's MRSEC (Materials Research Science and Engineering Center) and the New York Hall of Science will do this in an exciting manner by development of innovative 'rolling exhibits' (Discovery Carts) that are visually attractive, intellectually stimulating and demonstrate current research. This project will unite a dynamic University research faculty, dedicated graduate students, and high school teachers from one of the largest and best known teacher research experience programs in the country. NY Hall of Science, specialists in public science education, have developed exhibitions, over the past 20 years, for school and family group visitors in biology, chemistry and physics. Most recently, the Hall opened an 800-foot biochemistry discovery lab featuring ten experiments that teach visitors about the role of molecules in everyday life. The lab is facilitated by an explainer, and hundreds of families use the lab throughout the year. All exhibits and programs have rigorous science presented in an engaging manner in an educationally non-threatening environment. Columbia University is one of the premier research institutions in the country. Columbia's MRSEC is engaged in multi-faceted educational outreach activities in the New York metropolitan area, including a close working relationship with Columbia's 16 year old RET program. Together these institutions are well situated to involve the research community in public education activities that will inform the public about the current advances in science. Teachers and graduate students who have worked in MRSEC labs will assist in bringing new skills and ideas to the development of museum programming and exhibits. The teachers have experienced both the research projects first-hand and have had the experience in translating the research into meaningful classroom activities for their students. The graduate students have worked alongside the teachers, assisting them in making the research meaningful to high school students. Broader Impact: Highly skilled educators who can improve a young person's chances for success are like gold for the nation's schools, which are under pressure for tough accountability standards. Teachers will influence over a thousand students during the course of their careers. The Hall's Explainers are of high school and college age. These two groups will have positive impacts on our society for years to come. They will benefit from participation, and the tens of thousands of visitors to the museum will learn about cutting edge research.
DATE: -
TEAM MEMBERS: Irving Herman martin weiss