Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Division of Research on Learning in Formal and Informal Settings (DRL) has funded five resource centers/networks to provide support to five DRL programs, to the PIs connected to those programs, and to STEM education communities. (They are Center for Advancement of Informal Science Education--ISE; Center for Advancing Research and Communication in Science, Technology, Engineering, and Mathematics--REESE; Community for Advancing Discovery Research in Education--DR-K12; ITEST Learning Resource Center--ITEST; Learning and Youth Research and Evaluation Center--AYS.) While the activities of each vary, all conduct reviews of the portfolio, provide technical assistance to projects, and communicate results of project findings or resources to a broader field.

This EAGER project supports exploratory cross-network collaboration around accumulating, synthesizing, and communicating evidence generated by the funded projects and the networks. Specifically, the project enables sharing of data across programs; creating an online presence across the networks; collaborating to provide assistance to projects; and sharing expertise to improve network evaluations. The project will enhance infrastructure to support STEM education, learning, and education research and will expand dissemination of evidence generated by DRL projects and programs. The resulting increased coherence and the identification of productive areas of collaboration should enrich the STEM education field.
DATE: -
TEAM MEMBERS: Sarah-Kathryn McDonald Wendy Pollock Joyce Malyn-Smith Barbara Berns Bronwyn Bevan
resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource research Media and Technology
This is the first volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS: Constance Steinkuehler Crystle Martin Amanda Ochsner
resource project Professional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE: -
TEAM MEMBERS: Mitchell Wayne Randal Ruchti Daniel Karmgard
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource evaluation Public Programs
Since the summer of 2006, the Nature Museum at Grafton (TNM) has been offering three day intensive courses in Nature Writing and Nature Journaling. In 2006-07, TNM worked with PEER Associates to develop and analyze a survey which teachers complete on the last day of their course. TNM has continued to use that evaluation method, and, in December 2008 and February 2010, asked past participants to answer follow up questions about their future interest in programming options, experiences with the institutes, and their implementation of course content in their own classrooms. In late 2010, TNM
DATE:
TEAM MEMBERS: Amy Powers
resource project Public Programs
Through the Scientists for Tomorrow pathways project, The Science Institute at Columbia College in Chicago will test a model for preparing non-science major, pre-service elementary school teachers to deliver three ten-week informal science education modules to youth in after school programs. The initiative will bring engineering concepts, environmental science, and technology to approximately 240 urban Chicago youth (ages 10-14 years old) and their families. The Science Institute will partner with eight minority serving community based organizations and the Museum of Science and Industry, the Field Museum, and the Garfield Park Conservatory Alliance to develop and implement all aspects of the program. The goals of the program are two-fold. First, the project will develop and implement a high-quality STEM based afterschool program for under-represented youth in STEM. Second, the professional development and experience implementing the curriculum with youth in the local communities and within informal science education (ISE) institutions will extend and enrich the pre-service teachers\' STEM content and pedagogical knowledge base and better prepare them to teach science in formal and informal settings. Thirty teachers will receive specialized professional development through a seminar, course, and other support mechanisms in order to best support the implementation of the modules, while building their STEM content expertise, confidence, and pedagogical knowledge. Each module has a different STEM content focus: alternative energy (fall), the physics and mathematics of sound and music (winter), and environmental science (spring). At the end of each module, a culminating youth-led presentation will be held at one of the partnering Chicago museums. Youth will be encouraged to participate in all three modules. The formative evaluation will be conducted by the Co-Principal Investigators. Pre and post assessments, artifact reviews, and interviews will be used for the summative evaluation, which will be conducted by an external evaluator at the Illinois Institute of Technology. The project deliverables include: (a) a teacher training program, (b) an after school curriculum, and (c) media tools - DVDs, website. Over the grant period, the project intends to reach 120 youth each year, over 100 family and community members, and 30 teachers. The larger impact of this project will be the development of a scalable model for bringing relevant STEM content and experiences to youth, their families, and non-science major pre-service teachers. As a result of this project, a cadre of pre-service teachers will have: (a) increased their STEM content knowledge, (b) gained experience presenting STEM content in informal settings, (c) learned effective approaches to deliver hands-on STEM content, and (d) learned to use museum and other ISE resources in their teaching. In fact, after the grant period nearly half of the teachers will continue to work at the centers as part-time instructors, fully supported by the partnering community centers.
DATE: -
TEAM MEMBERS: Constantin Rasinariu Marelo Caplan Virginia Lehmkuhl-Dakhwe
resource project Professional Development, Conferences, and Networks
This proposal is from a coalition of cross disciplinary investigators at the Lawrence Hall of Science/Center for Ocean Sciences Education Excellence at the University of California, Berkeley. The investigators intend to create a communications network for ocean sciences in an informal setting to improve the communication of ocean science concepts. The network would foster relationships between ocean and climate scientists in institutions of higher education and build the capacity for educators to communicate with the public about science. The network is intended to impact visitors to informal science centers, docents, educators, and scientists. It would provide experiences with new scientific knowledge about the oceans and promote climate literacy for the landlocked states of the country where ocean sciences are not usual topics for educational programs. The network includes: 1. Long Beach Aquarium of the Pacific and University of Southern California; 2. Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; 3. Virginia Aquarium and Science Center and the Minorities in Marine Science Program, Hampton University; 4. Liberty Science Center and the Institute for Marine Coastal Sciences and Rutgers University; 5. Lawrence Hall of Science and Earth & Planetary Science and Integrative Biology, University of California, Berkeley; 6. Birch Aquarium at Scripps and Scripps Institution of Oceanography, University of California, San Diego; and 7. Purdue University. The goal of the project is to help a new generation of scientists and informal educators to better understand and more effectively communicate with the public the essential principles and fundamental concepts of Ocean Literacy, Climate Literacy, and Earth Science Literacy. The content is integral to understanding climate science and the science of climate change such as ocean circulation, causes of sea level rise, the influence of the ocean on weather and climate, the role of the ocean in Earth's energy, water and carbon systems, and the need for continued exploration of the ocean system.
DATE: -
TEAM MEMBERS: Catherine Halversen Craig Strang Lynn Tran
resource project Public Programs
The Community Collaborative Rain, Hail and Snow (CoCoRaHS) network is an existing backyard citizen science project that is enhancing the research efforts of scientists and promoting climate literacy among the public by engaging volunteers in precipitation-monitoring activities. More than 14,000 volunteer citizen scientists of all ages in 50 states currently measure precipitation from their homes, schools, public areas and businesses using rain gauges, snow rulers and hail pads, and then post their data to the CoCoRaHS website. Building on this work, the current Broad Implementation project is enhancing CoCoRaHS' network and making it possible for more people from across the country to monitor precipitation. The enhancements include (1) installing a new generation of data entry, storage, management, analysis and visualization tools, (2) collecting evapo-transpiration data to improve scientists' water cycle models, (3) revising and creating new citizen science training materials (print and multimedia), (4) expanding national collaboration and outreach via integration of social networking and mobile device technologies, and (5) developing a standards-aligned K-12 education outreach component that has a national reach. Citizen scientists are being equipped and trained to be neighborhood climate data analysts and are provided with new tools for data analysis and inquiry learning. The enhancements will allow new collaborations between museums and science centers, targeted outreach to underserved audiences, and recruitment of thousands of new volunteers for the CoCoRaHS network. Through a partnership with the National Association of Conservation Districts, the project will conduct educational outreach to all 3,140 counties in the country. Anticipated results include increased numbers of people, particularly younger people, participating in precipitation-monitoring activities, and increased participant knowledge, skills, interest, and involvement in climate science and scientific inquiry. Building the project's capacity to involve 20,000-50,000 more volunteers across nation will increase the density of precipitation-monitoring stations, providing scientists with higher quality weather data.
DATE: -
TEAM MEMBERS: Nolan Doesken
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
The Experiential Science Education Research Collaborative (XSci) at the University of Colorado Denver has established a museum educator/theater network of eight museums around the country, pairing larger with smaller institutions. The Association of Science-Technology Centers, the NASA Astrobiology Institute, and the Astronomical Society of the Pacific and several other organizations also are collaborators. The primary audience is informal science educators; secondary audiences are museum and science center visitors. The Science Theater Education Programming System (STEPS) is a technology the allows educators to create their own media-enhanced live theatrical presentations of science programs that include dynamic content, interactive virtual characters, and multiple plot-lines and endings to shows. The initial set of theater programs focus on astrobiology, along with a suite of training programs and communication formats for educators. The STEPS technology allows these programs to be delivered both on site and via outreach, depending on the goals of each organization. An in-depth research component is examining the impact of the project\'s designed community of practice structure utilizing team leadership theory in terms of professional identity construction for participating informal educators. Deliverables include: the museum partnership network, the STEPS system and programs, professional development tutorials and workshops, evaluation of the programs, and research products, among others.
DATE: -
TEAM MEMBERS: Brad McLain