Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.

To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.

A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.

Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.

This project provides the next logical step in the national movement to recruit and retain women in engineering.
DATE: -
TEAM MEMBERS: Rose Marra Barbara Bogue
resource project Media and Technology
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE: -
TEAM MEMBERS: Mitchel Resnick John Maeda Yasmin Kafai
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource project Public Programs
The Milwaukee Public Museum will develop Adventures in Science: An Interactive Exhibit Gallery. This will be a 7250 sq. ft. interactive exhibit with associated public programs and materials that link the exhibit with formal education. The goal of Adventures in Science is to promote understanding of biological diversity, the forces that have change it over time, and how scientists study and affect change. The exhibit will consist of three areas. "Our Ever-Changing World" will feature "dual scene" habitat dioramas that will convey at-a-glance how environments change over time. "The Natural History Museum" will be a reconstruction of a museum laboratory and collections area to protray behind-the-scenes scientific and curatorial activities that further the study of biological diversity, ecology and systematics. An "Exploration Center: will bridge these two areas and will be designed to accommodate live presentations, group activities and additional multimedia stations for Internet and intranet access. Using interactive devices, visitors will be encouraged to make hypothesis, examine evidence, compare specimens, construction histories of biological and geological changes, and develop conclusions about the science behind biodiversity and extinction issues. Visitors should also come away with an increased understanding of the role of systematic collections in understanding biological diversity. Information on MPM research programs will be highlighted in "The Natural History Museum" section and will be updated frequently. Annual Teacher Training Institutes for pre-service and in-service teachers will present strategies for using the gallery's multimedia stations, lab areas, and Web site links. Special attention will be given to reaching new audiences including those in the inner city and people with disabilities.
DATE: -
TEAM MEMBERS: Allen Young James Kelly Peter Sheehan Susan-Sullivan Borkin Rolf Johnson Mary Korenic
resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource evaluation Media and Technology
The goal of this evaluation was to assess issues of user friendliness, appeal and comprehension related to the Cyberchase website’s homepage, web adventures, weekly polls and games. Cyberchase is the Emmy Award-winning mathematics series and website on PBS KIDS GO! using broadcast, web, new media and educational outreach to impact millions nationwide. Designed for children ages 8 to 11 and packed with mystery, humor, and action, Cyberchase’s mission is to improve kids' problem-solving and math skills, and inspire them with confidence and enthusiasm toward math. The TV series airs daily on PBS
DATE:
TEAM MEMBERS: Barbara Flagg Sandra Sheppard Carey Bolster Michael Templeton Thirteen/WNET
resource project Media and Technology
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
DATE: -
TEAM MEMBERS: Kristin Bowman-James Teresa MacDonald
resource evaluation Media and Technology
This formative evaluation gathered feedback from after-school group leaders and their 3rd-5th grade youth in response to two activities included in the Cyberchase Workshops-In-A-Box. The user-based feedback will assist with the design of new after-school materials. The general goals for the research were:To explore reactions to the workshop guide generally To assess appeal of the two activities To pinpoint difficulties in the implementation of the two activities To estimate comprehension of the activity content.To evaluate leader interest in further activities.Cyberchase is the Emmy Award
DATE:
TEAM MEMBERS: Barbara Flagg Thirteen/WNET
resource evaluation Media and Technology
This formative evaluation gathered feedback from teachers and their fourth grade children in response to two activities included in the Cyberchase Teachers' Guide. The user-based feedback will assist with the design of new school-based materials. The general goals for the research were to explore reactions to the guide; assess appeal and difficulties in implementation of two activities; estimate comprehension of activity content; and evaluate teacher interest in further activities. Cyberchase is the Emmy Award-winning mathematics series and website on PBS KIDS GO! using broadcast, web, new
DATE:
TEAM MEMBERS: Barbara Flagg Thirteen/WNET
resource evaluation Public Programs
Evidence from the data collected on the Midwest Wild Weather Project indicates that the teachers are very excited about its potential for increasing their students' science literacy and understanding of the scientific process, as well as increasing their knowledge of the weather and exciting them about science in general. Students are very focused, enthusiastic and excited when interacting with the exhibits and universally pleased with their exploration and explainer experiences. MWW is also effectively reaching the intended underserved and underrepresented students across the nine sites are
DATE:
TEAM MEMBERS: Gregory Aloia SciTech Hands On Museum