Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge
DATE:
TEAM MEMBERS: Valerie Knight-Williams Divan Williams Rachael Teel Dobrowolski Gabriel Simmons Sauleh Rahbari
resource project Media and Technology
Quest, produced by KQED, is a multimedia initiative designed to raise the profile of STEM issues throughout the Northern California region and activate citizens to discuss and investigate them. Led by KQED, Quest is created and maintained by an active consortium of 16 participating informal science education organizations. Based on the successful Quest model, KQED will build on its prior collaborative work to develop regional partnerships with other public broadcasting stations and community-based organizations around the country, making possible a new and innovative partnership in science media production and informal science education. This grant will support a) a growing collaborative of science centers, museums, research institutes, and community-based organizations for editorial development, education outreach, and content creation; b) the production of at least 10 hours of television, weekly radio science news reports, and a dynamic online website that supports and extends the broadcast material; and c) educational resources and professional development workshops. STEM content will encompass research drawn from the physical sciences, life sciences, and earth sciences. Most of the stories will also incorporate content about the technology and engineering used to support scientific endeavors. The KQED Educational Network (EdNet) will administer the community and educational outreach initiatives, including creating viewer/listener guides, developing and delivering workshops, and providing information built around Quest media. Project collaborators include the Bay Institute, California Academy of Sciences, Chabot Space and Science Center, East Bay Regional Park District, Exploratorium, Girl Scouts, Lawrence Berkeley National Laboratory, Lawrence Hall of Science, Museum of Paleontology, Oakland Zoo, and The Tech Museum of Innovation. In expanding the model to regional hubs, Quest will also involve the Coalition for Public Understanding of Science (COPUS), the Encyclopedia of Life, and an array of peer public broadcasting organizations. This project offers a useful and exciting model for public television and radio stations nationally in building community collaborations that advance informal science education. The detailed and informed ways in which the team works with its community partners via multiple platforms are innovative. This proposal builds on prior work in Northern California to explore additional regional partnerships with other public broadcasting stations and community-based organizations, making possible a unique partnership in science media production and informal science education. This project extends reach by developing up to ten regional "hubs" across the country. Evaluation will be conducted by Rockman et al.
DATE: -
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource evaluation Public Programs
Media MashUp is an IMLS funded project (Grant LG-07-08-0113i) to help libraries build capacity to offer computer-based programs for youth that help foster 21st Century literacy skills. Twenty first Century literacy skills include traditional literacy skills like reading and writing, but also encompass collaborative problem solving, and computer-based skills. As such, libraries and other institutions that help foster a literate public need to adapt to this new reality. While the public audience for this grant is the youth who participate in the Media MashUp programs at these libraries, this
DATE:
TEAM MEMBERS: Molly Phipps
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource evaluation Media and Technology
Internet Community of Design Engineers (iCODE) program, which took an innovative approach to structuring self-directed learning –– using a collaborative on-line environment to facilitate hands-on activities, was a three year program led by the University of Massachusetts Lowell and Machine Science Inc., Cambridge. The overall objective of this program, which involved after-school and summer sessions and was funded by NSF’’s Innovative Technology Experiences for Students and Teachers (ITEST) Program, was to increase the likelihood that participating middle school and high school students will
DATE:
TEAM MEMBERS: Rucha Londhe Colleen Manning Rachel Schechter Laura Houseman Irene Goodman
resource project Media and Technology
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
DATE: -
TEAM MEMBERS: Rutgers University Carrie Ferraro
resource research Media and Technology
This article draws from the literature on self-determination and Universal Design for Learning principles to set forth the theory that students identified as having learning disabilities may be environmentally disadvantaged and their learning difficulties exasperated by the traditional classroom learning environment. Alternatively, the digital learning environment found in simulation video games is designed so participants can be autonomous, self-directed, goal-oriented and successful. These are, coincidentally, the salient features of a technology-enhanced learning environment designed with
DATE:
TEAM MEMBERS: Elizabeth Simpson
resource research Media and Technology
This article reviews how the relationship between computer games and learning has been conceptualized in policy and academic literature, and proposes a methodology for exploring learning with games that focuses on how games are enacted in social interactions. Drawing on Sutton-Smith's description of the rhetorics of play, it argues that the educational value of games has often been defined in terms of remedying the failures of the education system. This, however, ascribes to games a specific ontology in a popular culture that is defined in terms of its opposition to school culture. By
DATE:
TEAM MEMBERS: Caroline Pelletier
resource research Media and Technology
Both in common parlance and within the academy, the word “learning” has broad and varied meanings. On the street, we apply the same term to a child who, as a result of bitter experience, will no longer tease an older, tougher peer, and to those who achieve the highest Latinate degrees after many years of study at the University. In the field of psychology, “learning” was the major topic in America for fifty years, before it was replaced and almost consigned to oblivion, courtesy of the “cognitive revolution” of the 1960s (Gardner 1985). Now, with study becoming a lifelong enterprise, and with
DATE:
TEAM MEMBERS: Margaret Welgel Carrie James Howard Gardner
resource research Informal/Formal Connections
This paper presents research on parent support of the development of new media skills and technological fluency. Parents' roles in their children's learning were identified based on interviews with eight middle school students and their parents. All eight students were highly experienced with technology activities. Seven distinct parental roles that supported learning were identified and defined: Teacher, Collaborator, Learning Broker, Resource Provider, Nontechnical Consultant, Employer, and Learner. The parents in this sample varied in their level of technological knowledge, though in every
DATE:
TEAM MEMBERS: Brigid Barron Caitlin Kennedy Martin Lori Takeuchi Rachel Fithian
resource research Public Programs
In 2007, Carnegie Corporation of New York joined with the Institute for Advanced Study to create a commission, comprised of some of our nation’s most distinguished mathematicians, scientists, educators, scholars, business leaders, and public officials, to assess not only the current state of math and science education in the U.S. but also how to enhance the capacity of our schools and universities to generate innovative strategies across all fields that will increase access to high-quality education for every student in every classroom.
DATE:
TEAM MEMBERS: Carnegie Corporation and the Institute for Advanced Study