Skip to main content

Community Repository Search Results

resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
Aligning for Impact: Computer Science Pathways Across Contexts [CS-PAC] is an NSF INCLUDES Design and Development Launch Pilot. It broadens participation of students who are underrepresented in computer science by using the convening and policy-making power of the Georgia State Department of Education to coalesce school district leaders to implement K-12 computer science education. The project provides a national model for how to work toward systemic change. With the State Department of Education's coordination, several school districts will collaboratively seek improvements in their own student participation rates. The coordination of data reporting and analysis, resources, communications, and policy promote more equitable participation in computer science education. Research emerging from this project informs other states about how to collaboratively shape computer science education policy and policy implementation.

Using a Collective Impact approach to systemic change, the project creates sustainable institutional change at the community, state, and national levels. Qualitative and quantitative data provide descriptions about how to utilize alignment strategies within Collective Impact in three different contexts: rural, suburban, and urban. Outcomes utilize a regression discontinuity analysis to justify successful implementation as well as qualitative analysis of implementation efforts that were deemed most effective by all stakeholders. The project outputs directly affect over 88,000 students across five districts and indirectly affect over 1.7 million in Georgia alone. The culminating project goal is the development of a coherent framework for aligning K-12 computer science education pathways.
DATE: -
TEAM MEMBERS: Caitlin Dooley Bryan Cox Shawn Utley
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez
resource research Public Programs
Keystone Connect Network is a proposed regional broadband network whose purpose is to increase educational opportunities and generate business growth. The backbone of this plan is the Pennsylvania Research and Education Network's (PennREN), a next generation high-speed internet network, managed by KINBER, which educational institutions can use to train their students and create new learning opportunities; and business can create new products and connect with their customers.
DATE:
TEAM MEMBERS: John Hall
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This media and technology project will scale up Youth Radio's proven model of STEM education through youth-driven multimedia journalism and related app development using the MIT App Inventor. A new Youth News Network (YNN) will implement a nationwide feeder system of youth reporters and educators using the previously developed and proven STEM curriculum. Previous research and evaluation has demonstrated that this model can engage underserved youth and put them in leadership positions in technological innovation. Key deliverables include the YNN STEM Desk that will produce 15-20 STEM-related stories each year; bootcamps (1-3 day workshops) training youth around the country focusing on app development and media links; and new toolkits providing resources to help with app development, data analysis and other STEM-specific skills. Project partners include MIT Media Lab, National Public Radio, Best Buy's Teen Tech Centers, National Writing Project, Computer Clubhouses, and PBS Learning Media among others.

Over the previous eight years, research and evaluation findings had been used to refine the project. These data served as the foundation for this scale-up project. The research conducted by the investigator and the Scholar-in-Residence in this scale-up uses an embedded ethnographic approach that combines field notes, recorded meetings and discussions, media artifacts, etc.--data that is transcribed and coded for indicators of STEM learning and critical computational literacy. The external summative evaluation will build on prior evidence regarding how this unique model engages youth and impacts their skills in STEM related media and technology.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Professional Development, Conferences, and Networks
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments.

The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez Anthonette Pena
resource project Media and Technology
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.

Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.

These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE: -
TEAM MEMBERS: Richard Ladner Libby Cohen Sheryl Burgstahler William McCarthy
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Professional Development, Conferences, and Networks
The Cyberlearning Resource Center (CRC) has responsibility for promoting integrative collaboration among cyberlearning grantees (across NSF programs); synthesis and national dissemination of cyberlearning findings, technologies, models, materials, and best practices; creating a national presence for Cyberlearning; helping the disparate Cyberlearning research and development communities coordinate efforts to build capacity; and providing infrastructure (technological and social) for supporting these efforts. Monitored through the Cyberlearning: Transforming Education program, the CRC serves as a resource for all NSF grantees and programs with cyberlearning components, helping to promote synergy and integrate projects across NSF's cyberlearning investments. Among society's central challenges are amplifying, expanding, and transforming opportunities people have for learning and more effectively drawing in, motivating, and engaging young learners. Engaging actively as a citizen and productively in the workforce requires understanding a broad variety of concepts and possessing the ability to collaborate, learn, solve problems, and make decisions. Whether learning is facilitated in school or out of school, and whether learners are youngsters or adults, to develop such knowledge and capabilities, learners must be motivated to learn, actively engage over the long term in learning activities, and put forth sustained cognitive and social effort. Consistent with NSF's mission and strategic plan, a variety of programs at NSF invest in research aimed towards achieving these goals. In support of this important thematic thrust, the Cyberlearning Resource Center works with researchers and NSF program officers to identify and disseminate findings from across programs and projects; develop ways to broker productive partnerships and collaborations; convene meetings for purposes of envisioning the future, integrating findings, and building capacity,; and monitor the cyberlearning portfolio and its influences and impacts.
DATE: -
TEAM MEMBERS: Jeremy Roschelle Patricia Schank Sarita Nair-Pillai Marianne Bakia
resource project Public Programs
EvalFest (Evaluation Use, Value, and Learning through Festivals of Science and Technology) will test innovative evaluation methods in science festivals that are being held across the country and assess in what ways and how effectively they are used. Morehead Planetarium and Science Center (at the University of North Carolina-Chapel Hill) and the University of California, San Francisco, in collaboration with over twenty science festivals, will (1) investigate whether a multisite evaluation approach is an effective model for creating common metrics for informal STEM education, (2) develop common methods to measure the effects of Festivals, (3) create a query-able database of 50,000 Festival attendees to share with the informal STEM learning field, and (4) document whether these efforts also result in new knowledge related to informal STEM education. The project will develop the Enterprise Feedback Management (EFM) system and query-able database for the festival community. EFMs are systems, including processes and software, that enable groups (such as the festival network) to collect, organize, analyze and share data. The EFM system will be designed to integrate data across sites and to allow users to extract data of interest. The project will refine evaluation tools currently used within the Science Festival Alliance that assess self-reported festival learning, and the effects of festival attendance, motivation, and future science participation. It will collect economic impact data and longitudinal festival attendee data. The project will also develop some new evaluation tools such as secret shopper observational protocols. Data from festival attendees will be collected onsite at participating festivals.
DATE: -
resource research Media and Technology
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The
DATE:
TEAM MEMBERS: New England Center for the Public Understanding of Science Avelina Espinosa Guillermo Paz-y-Mino-C