Skip to main content

Community Repository Search Results

resource project Exhibitions
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
DATE: -
TEAM MEMBERS: Roberta Cooks
resource project Media and Technology
The Tech Museum of Innovation (The Tech) in San Jose, California proposes to partner with NOAA to integrate Science On a Sphere (SOS) into The Tech's Exploration gallery and to facilitate the development of informal and formal learning programs. Exhibits and programs at The Tech focus on the integration of emerging technologies into hands-on visitor experiences. In 2004, The Tech partnered with NOAA, the Maryland Science Center (MSC), and a consortium of national science centers to explore the potential and effectiveness of SOS as a method of engaging and informing the general public about NOAA-related sciences. Initial testing of SOS at the Maryland Science Center revealed that SOS is a visually compelling and engaging medium for conveying complex scientific information to museum visitors. Ninety-eight percent of visitors tested regarded a facilitated SOS program as a good or excellent experience with strong visitor retention suggesting the potential of SOS as a compelling visitor tool. However, when the experience was not facilitated this retention dropped dramatically. Support from NOAA will enable The Tech to test SOS and NOAA data in a number of formats to determine the most effective ways to utilize this incredible technology. The results of this evaluation will be shared with other museums using SOS to improve its reach in teaching informal audiences and promoting interest in both STEM content and NOAA research. The SOS exhibit will bring together scientists, technologists, informal education specialists, and young users to unlock the educational potential of NOAA's datasets and further NOAA's educational plan. Hands-on experiences using SOS will engage visitors in meaningful explorations of NOAA data. The Tech Museum will make SOS accessible to people of all ages, backgrounds, and educational levels. All panel text, audio, and captions will be presented in both English and Spanish to allow greater accessibility for local audiences. SOS will provide the programming platform upon which to explore the educational opportunities of this gallery as it illustrates how data collected with remote sensing technologies is helping us understand and make predictions about our dynamic environment and the future of our planet. SOS will illustrate how these data collecting technologies assist us in developing our knowledge about our planet and its solar system.
DATE: -
TEAM MEMBERS: Greg Brown
resource research Informal/Formal Connections
I have been involved in College education since my days as a student in the Universidad de Buenos Aires. At that time, 1960, I helped to teach the course of Scientific Russian given in the Faculty of Sciences; strange as it might seem, the aim of the course was to allow the students to use scientific books especially in the area of Physics and Mathematics.
DATE:
TEAM MEMBERS: Faustino Sineriz
resource research Public Programs
"Knowledge and information are essential for people to respond successfully to the opportunities and challenges of social, economic and technological changes (...). But to be useful, knowledge and information must be effectively communicated to people", says the Food and Agricultural Organization. India is home to a number of ICT-enabled development initiatives, and we will look at one of them to learn how an effective communication strategy is used.
DATE:
TEAM MEMBERS: Subbiah Arunachalam
resource evaluation Media and Technology
The Nanoscale Informal Science Education Network (NISE Network) is a national infrastructure that links science museums and other informal science education organizations with nanoscale science and engineering research organizations. The Network’s overall goal is to foster public awareness, engagement, and understanding of nanoscale science, engineering, and technology. As part of the front-end effort, this report, Part IIB, documents 19 nanoscale STEM programming, media, and school-based projects that have been completed or are in development as of 2005.
DATE:
TEAM MEMBERS: Barbara Flagg
resource research Public Programs
This paper focuses on an early stage of developing curricular materials to support students' learning of scientific inquiry. The materials being developed and tested, called Classroom FeederWatch (CFW), aimed to support science inquiry and were developed by a collaborative team of private curriculum developers and scientists (ornithologists). Inquiry dimensions were influenced at the outset by the newly released National Science Education Standards (National Research Council, Washington, DC: National Academy Press, 1996) and by prior successful experiences of ornithologists with inquiry
DATE:
TEAM MEMBERS: Deborah Trumbull Rick Bonney Nancy Grudens-Schuck
resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource research Media and Technology
In October 2005, the National Science Foundation brought members of its nanoscale science and engineering education (NSEE) projects to Arlington, VA for a 2-day workshop to explore the status of on-going efforts and to forge collaborations at the national level that would facilitate future efforts. NSF currently funds NSEE projects through the Division of Elementary, Secondary, and Informal Education (ESIE), the Directorate for Engineering as part of the Nanoscale Science and Engineering Centers (NSEC), National Nanotechnology Infrastructure Network (NNIN), the Network for Computational
DATE:
TEAM MEMBERS: National Science Foundation
resource research Media and Technology
How can research on teaching and learning be used to improve the design of e-content? The contents of this report are based on a series of seminars conducted during 2003 and 2004, funded by the Economic & Social Research Council (ESRC), that were coordinated by Lydia Plowman, University of Stirling. They were also sponsored by a number of organisations including Futurelab. Each seminar was attended by researchers from universities, creators and managers of companies that make educational resources, and people engaged in policy making or representing Government agencies
DATE:
TEAM MEMBERS: Lydia Plowman
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Professional Development, Conferences, and Networks
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE: -
TEAM MEMBERS: R. P. H. Chang Thomas Mason Ncholas Giordano Joseph Krajcik