Skip to main content

Community Repository Search Results

resource project Media and Technology
"Birds in the Hood" or "Aves del Barrio" builds on the Cornell Laboratory of Ornithology's (CLO) successful Project Pigeon Watch, and will result in the creation of a web-based citizen science program for urban residents. The primary target audience is urban youth, with an emphasis on those participating in programs at science centers and educational organizations in Philadelphia, Tampa, Milwaukee, Los Angeles, Chicago and New York. Participants will develop science process skills, improve their understanding of scientific processes and design research projects while collecting, submitting and retrieving data on birds found in urban habitats. The three project options include a.) mapping of pigeon and dove habitats and sightings, b.) identifying and counting gulls and c.) recording habitat and bird count data for birds in the local community. Birds in the Hood will support CLO's Urban Bird Studies initiative by contributing data on population, community and landscape level effects on birds. Support materials are web-based, bilingual and include downloadable instructions, tally sheets, exercises and results. The website will also include a web-based magazine with project results and participant contributions. A training video and full color identification posters will also be produced. The program will be piloted at five sites in year one, and then field-tested at 13 sites in year two. Regional dissemination and training will occur in year three. It is anticipated that 5,000 urban bird study groups will be in place by the end of the funding period, representing nearly 50,000 individuals.
DATE: -
TEAM MEMBERS: Rick Bonney John Fitzpatrick Melinda LaBranche
resource project Exhibitions
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
DATE: -
TEAM MEMBERS: Harold Craighead Barbara Baird
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Media and Technology
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
DATE: -
TEAM MEMBERS: Kristin Bowman-James Teresa MacDonald
resource project Media and Technology
The Educational Broadcasting Corporation (WNET) is researching and testing an experimental, short-format television broadcast and Web project entitled "Science InSight." The goal of this experimental research is to determine if short-format television segments can successfully increase Americans' understanding of -- and interest in -- new research in science and technology and, if they can, which of several possible formats is likely to be most successful. During this research and development phase, WNET will test the viability of the project model and develop and refine the model for use in a selected group of media venues such as the forthcoming PBS weekly public affairs program,"Public Square." The specific activities to be undertaken in the research phase include: -assembling an expert board of up to six advisors with expertise in science, science journalism and media; -producing three, experimental, short-format, "program concept" video segments of varying lengths for use as science information pieces in other media programs; -conducting formal and informal testing and evaluation of these test formats for appeal, credibility, clarity and comprehensibility of style and content; and -identifying additional key potential distribution partners from television media, print, Web and science centers outlets.
DATE: -
TEAM MEMBERS: Irwin Shapiro
resource project Exhibitions
Assessing the Impact of a Visit to a Zoo or Aquarium: A Multi-institutional Research Project will create a functional taxonomy of zoo/aquarium visitors' entering knowledge, attitudes and behaviors. This taxonomy, in conjunction with data about the specific experiences visitors have during their visit, will enable investigators to understand and predict the contribution of zoos and aquariums to the public understanding of animals and their conservation. The results will clarify the role of zoos and aquariums as centers of informal learning and point to ways to strengthen their educational impact. The AZA convened a national advisory committee that commissioned and completed a thorough review, confirming a critical need to conduct more research, particularly research that attempts to ask broad questions, collect data systematically, and includes sufficient number and types of institutions to permit community-wide generalizations. Twelve AZA institutions of various sizes, geographic regions and types will participate in the study. The net result of the study will be a descriptive model of zoo and aquarium visitor learning experiences and development of a set of diagnostic tools to help zoo and aquaria staff understand and enhance the nature and extent of their public impact.
DATE: -
TEAM MEMBERS: Paul Boyle Bruce Carr Cynthia Vernon John H Falk
resource project Media and Technology
SoundVision Productions is developing and distributing a series of ten, hour-long public radio documentaries that will explore the turbulent boundary between science and the humanities, capturing the present moment of tremendous scientific and scholarly ferment with the unique and intimate power of radio. By introducing the radio audience to the thoughts and voices of some of the world\'s most accomplished scientists, in conversations with the counterparts in the humanities, the series will look at recent developments in science including physics, molecular and cell biology, environmental science, cognitive psychology and neuroscience, and the multiple disciplines of the life sciences reflecting the increasingly subtle and widespread application of evolutionary theory. In each program, a careful account of new scientific ideas and discoveries will be placed within the context of historical and contemporary thought about the human and natural worlds. Barinetta Scott, the Executive Producer, has most recently been the Executive Producer for the highly regarded NSF funded NPR series, "The DNA Files." In developing this project, she will work closely with an advisory committee that includes: John Avise, Research Professor, Dept. of Genetics, University of Georgia Samuel Barondes, Professor and Director of the University of California San Francisco\'s Center for Neurobiology and Psychiatry Terrence Deacon, Associate Professor of Anthropology, Boston University Anne Foerst, Professor of Computer Science and Theology, St. Bonaventure University Ursula Goodenough, Dept. of Biology, Washington University, St. Louis William Irons, Professor of Anthropology, Northwestern University Gordon Kane, Professor of Physics, University of Michigan Jim Miller, Senior Program Associate for the AAAS Program of Dialogue Between Science and Religion W. Mark Richardson, Episcopal Priest, Associate Professor of Systematic Theology, General Theological Seminary Holmes Rolston, University Distinguished Professor in the Department of Philosophy, Colorado State University Michael Ruse, Professor of the Philosophy of Biology and Ethics, at Florida State University Mary Evelyn Tucker, Professor of Religion at Bucknell University Dorothy Wertz, Senior Scientist; Social Science, Ethics, and the Law; The Shriver Center.
DATE: -
TEAM MEMBERS: Bari Scott
resource project Public Programs
Explore Evolution is a three-year project that uses a combination of traveling exhibits and activity kits to introduce the concept of evolution to museum audiences and 4-H groups. Six museum partners will collaborate on the development of eleven interactive exhibit modules on the following topics: disease in humans, eye development in animals, fruit fly diversity, sexual selection, hominoid development and extinction. The museum consortium includes the Kansas Museum and Biodiversity Center, Museum of the Rockies (MT), Sam Noble Oklahoma Museum of Natural History, Science Museum of Minnesota, University of Nebraska State Museum and the Exhibits Museum of the University of Michigan. The inquiry-based activity kits will be modeled after the University of Nebraska-Lincoln's "Wonderwise" kits, funded in part by NSF, and designed for middle school audiences. An "Explore Evolution" website will be launched to support the exhibits and activity kits. Dissemination will occur through museum education programs as well as a consortium of 4-H programs in Iowa, Minnesota, Montana, Michigan, Nebraska and Wyoming. It is anticipated that more than 1.8 million museum visitors and 800,000 4-H members will participate in this project.
DATE: -
TEAM MEMBERS: Judy Diamond
resource project Media and Technology
The Science Museum of Minnesota (SMM) will develop Window on Catalhoyuk: An Archaeological Work in Progress. The project will include a 4,500 sq. ft. exhibit, a World Wide Web site, an exhibit cookbook for archaeology interactives developed for the exhibit, and a suite of related classroom activities. Catalhoyuk is currently the most important archaeological site in Turkey and among the most significant cultural heritage monuments in the world. It consists of two mounds located on either side of an ancient river channel. The larger mound has Early Neolithic age occupation levels (9000 and 7500 years ago) and represents one of the largest known Neolithic settlements, holding links to the beginnings of agriculture, animal domestication, and the rise of urban complexity. The smaller mound consists of more recent occupations (7500 to 5000 years ago). Together they may record nearly 10,000 years of human occupation. SMM has been a partner, along with the Turkish team, in the Catalhoyuk Research Project since its inception in 1993 and has the responsibility of developing public programs and for bringing the research findings before a worldwide audience. Unlike a traditional approach where the results of archaeological research appear years after the excavations, this project will focus on the process of archaeology giving visitors the opportunity of learning about the workings of contemporary archaeology and the nature of scientific inquiry, along with the important insight into the beginning of Mediterranean civilization. The exhibit will be updated annually for two years to reflect new results of ongoing fieldwork. The project addresses the National Science Education Standards, particularly those related to science as inquiry and to the history and nature of science.
DATE: -
TEAM MEMBERS: Donald Pohlman Natalie Rusk Orrin Shane
resource project Exhibitions
The Exploratorium will develop an exhibition entitled " Traits of Life: Exploratory Exhibits in the Life Sciences". There will be two versions. The first will be a 4,500 sq.-ft. exhibit that will include about 35 life science interactive modules and will be installed at the Exploratorium. Following an evaluation period, about 20 of the exhibits will be used for a 3,000 sq.-ft. traveling version of the exhibition. The Association of Science and Technology Centers will manage the circulation of the exhibition. Challenging visitors to consider the question "What is Life?" this exhibition will be designed to offer learners new ways to explore characteristics shared by all living things. Three traits have been selected to illustrate the characteristics common to all living things: a shared molecular and cellular structure, self-reproduction, and adaptation to surroundings. These traits will be reflected in three sections of the exhibit: "A Common Design", "Passing It On" and "Staying Alive". Complementary elements include artists-in-residence, scientists-in-residence, teacher institutes, student materials, web-based activities, public programs and publications. Project staff will attempt to develop an understanding of techniques that are most successful in stimulating learning about life science in informal settings.
DATE: -
TEAM MEMBERS: Charles Carlson Kathleen McLean
resource project Public Programs
The Science Museum of Minnesota will develop "Investigations in Cell Biology," an integrated program that introduces cell, microbiology, and molecular biology to museum audiences through open-access, wet-lab, micro-experiment benches; training and support for school teachers; classes for adults and teens; and a long-term program for local high school youth. The project includes the development, testing, and installation of four micro-experiment benches that introduce visitors to the objectives, tools, and techniques of cell biology experimentation. These benches,"Inside the Cell," "Testing for DNA," "DNA Profile," and "Microbe Control," will be part of "Cell Lab," a 1,500 square-foot open experiment area within the science museum's new core exhibition, "The Human Body," opening December 1999.
DATE: -
TEAM MEMBERS: Laurie Kleinbaum Fink Susan Fleming J Newlin