Skip to main content

Community Repository Search Results

resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Exhibitions
National priorities recommend the U.S. fortify a culture of innovation by encouraging broader participation in invention and STEM. The Game Changers is an Innovations in Development exhibition project with embedded research that advances knowledge about how museum exhibits can activate STEM-related inventive identities among the public. The project is a collaboration between the Smithsonian's Lemelson Center for the Study of Invention and Innovation at the National Museum of American History (NMAH-LC), educational researchers, an exhibition design firm, and community based organizations. While the Game Changers exhibition theme of inventiveness in sports provides an initial spark for broad audience interest and engagement, its ultimate intent is to foster and enhance inventive identity among diverse audiences, particularly girls and young women ages 10-17, African American youth ages 10-17, and people of all ages with disabilities. Visitors will be met by a brief introductory display to launch their journey from passive learner to active inventor. A diverse array of athletes and inventors provide relevant motivational exemplars and ask visitors "How will YOU Change the Game?" Examples of invention challenges include, applying the principles of physics and materials science to aid in designing a safer helmet and exploring computational fluid dynamics to design a faster swimsuit. Throughout the exhibition experience, visitors will draw on an array of STEM skills and knowledge essential to sports, including physiology, kinesiology, and biomechanical engineering, physics, biomimicry, robotics, computer science, data analysis, and virtual and augmented reality. Throughout the project, the team will work with priority audiences, starting with front-end research and evaluation; progressing iteratively through stages of formative research, design, and evaluation; and conducting summative evaluation to ensure that the STEM-based content and design strategies are impacting inventive identity and meeting audiences' interests and needs. In coordination with the exhibition development and evaluation teams, educational researchers will iteratively explore and develop a model for innovative identity development in informal learning environments.

Educational psychologists from Old Dominion University and Temple University will collaborate closely with the NMAH-LC team, exhibition design-fabrication firm Roto, and evaluators from Randi Korn & Associates to adapt a theoretical model of identity from a formal education setting to an informal learning context. In the model, identity is conceptualized as a complex dynamic system, with interdependent internal and external elements (ontological/epistemological beliefs; self-perceptions; purpose and goals; perceived action possibilities) and reciprocal influences in a process of continuous emergence. Using design based research and a previously developed coding manual, the team will iteratively apply, test, and further advance the inventive identity development model, a set of inventive identity indicators for future research and development, and a list of exhibition design techniques for activating inventive, STEM-based identity development in informal learning environments. The research team will prioritize diverse audiences for iterative cycles and focus groups, including participants from the Girl Scouts of the Nation's Capital, Smithsonian Accessibility Program, Smithsonian's Anacostia Community Museum, and YMCA of Washington, DC. The exhibition's research, evaluation, and design outcomes will be disseminated widely across the AISL field and through project collaborators.

This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Monica Smith Jeffrey Brodie
resource project Exhibitions
For thousands of years, Native Hawaiian/Pacific Islander (NHPI) seafarers have successfully utilized systemic observation of their environment to traverse vast expanses of open ocean and thrive on the most remote islands on earth. Developing NHPI trust in the scientific enterprise requires building connections that bridge the values and concepts of 'ike kupuna (traditional knowledge) with scientific knowledge systems and contemporary technology. This project will develop and research a pop-up science exhibit that connects indigenous Hawaiian knowledge with contemporary Western science concepts. The exhibit will show how community knowledge (that is consistent with underlying scientific principles and natural laws) has informed innovation by indigenous peoples. This community-initiated and developed project will begin with a single pop-up exhibit designed to incorporate several hands-on culture-based STEM activities that integrate traditional and modern technologies. For example, the exhibit may cover indigenous systems of star navigation for ocean voyaging, systems of netting for food and water containers, or systems of home design with local and natural materials. This project seeks to develop preliminary evidence of the effectiveness of such an approach for supporting rural Hawaiian youths' STEM engagement, understanding, and personal connections to Native Hawaiian STEM knowledge. Findings from this pilot and feasibility study will inform the development of a larger pop-up science center grounded in indigenous Hawaiian STEM knowledge, and advance intellectual knowledge around culturally sustaining pedagogy by helping informal STEM education practitioners understand community initiated and developed STEM exhibits.

This pop-up science center pilot will be led by a local Hawaiian community organization, INPEACE, in collaboration with several local community members and other community-based organizations. The preliminary research will iteratively explore whether and how an existing Hawaiian culture-based framework can be used to design hands-on STEM exhibits to enhance rural learner engagement, depth of STEM knowledge, and connection to Native Hawaiian STEM knowledge. Research efforts led by Kamehameha Schools, which has a long history of conducting research from an indigenous worldview, will engage 120 learners from various rural communities across Hawaii, from which 40 will be pre-selected middle-school youth, and 80 individuals will be from public audiences of learners ages 12 and up. Through a series of observations, interviews, pre and post surveys with validated instruments, and focus groups, the research will probe: (1) The learners' thoughts on the science practice and its relevance to old and new Hawaii and modern society. (2) The level at which related STEM topics have been understood, and (3) The learners' perceptions about their connection to Native Hawaiian STEM knowledge. Results from this pilot study will inform a future pop-up science center development project, and add to the scarce literature on community-driven, culturally sustaining exhibition development.

This Pilots and Feasibility Studies project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maile Keliipio-Acoba
resource evaluation Public Programs
In 2015, Fairchild Tropical Botanic Garden (Fairchild), located in Miami-Dade County, Florida, entered into partnership with NASA’s Kennedy Space Center (KSC) to help advance NASA’s plant research through classroom-based STEM citizen science with a project entitled, Growing Beyond Earth (GBE). The project, initially launched with 3,600 students at 97 middle and high schools primarily in Miami-Dade County, has expanded to include 10,639 students at 210 schools in 26 states and Puerto Rico. GBE is designed to: a) Increase middle and high school students’ interest and skills in science by
DATE:
TEAM MEMBERS: Catherine Raymond Marion Litzinger Yang Wen Amy Padolf Carl Lewis
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI
resource research Public Programs
This Knowledge Building Report provides an overview of Project TRUE, including program implementation, as well as the research and evaluation results.
DATE:
TEAM MEMBERS: Karen Tingley Su-Jen Roberts Jason Aloisio JD Lewis J. Alan Clark Jason Munshi-South
resource research Public Programs
Preparing mentors for their role is essential. Though most research tells us that you cannot teach or train someone how to be a mentor, there is tremendous value in preparing mentors for their upcoming experience through self-reflection, setting expectations, and discussion. Ultimately, mentors will learn and develop their skills while they are mentoring. For this reason, in addition to preparing mentors for their role, it is critical to create a supportive and inclusive community to support mentors during their mentoring experience. This “Mentoring Training Toolkit” distills what was
DATE:
TEAM MEMBERS: Emily Stoeth Su-Jen Roberts Karen Tingley Jason Aloisio
resource evaluation Exhibitions
This front-end evaluation study is part of Designing Our Tomorrow: Mobilizing the Next Generation of Engineers, a five-year project (2018–2023) led by the Oregon Museum of Science and Industry (OMSI) with the support of the National Science Foundation (NSF, DRL-1811617) and project partners: Adelante Mujeres, the Biomimicry Institute, and the Fleet Science Center. The Designing Our Tomorrow (DOT) project seeks to promote and strengthen family engagement and engineering learning via compelling exhibit-based design challenges, presented through the lens of sustainable design exemplified by
DATE:
resource evaluation Public Programs
Our goal in creating this guide is to provide practitioners, organizations, researchers, and others with a “one-stop shop” for measuring nature connections. The guide is for those interested in assessing and enhancing the connections their audiences have to nature; we use the term “audience” to refer broadly to your participants or to any group you are trying to assess. The guide can help you choose an appropriate tool (for example, a survey or activity) for your needs, whether you work with young children, teenagers, or adults (see the Decision Tree on p. 14). The guide also includes 11 tools
DATE:
TEAM MEMBERS: Gabby Salazar Kristen Kunkle Martha Monroe
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.

The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan Patricia Wonch Hill Elizabeth VanWormer
resource research Professional Development, Conferences, and Networks
On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The
DATE:
TEAM MEMBERS: Carol Lynn Alpert