Skip to main content

Community Repository Search Results

resource research Media and Technology
This NOVA multiplatform media initiative consisted of a 2-hour nationally broadcast PBS documentary, Polar Extremes; a 10-part original digital series, Antarctic Extremes; an interactive game, Polar Lab; accompanying polar-themed digital shorts, radio stories, text reporting, and social media content; a collection of educational resources on PBS LearningMedia; and community screening events and virtual field trips for science classrooms. Across multiple media platforms the project’s video content had nearly 13 million views. The research explored the potential for informal STEM learning
DATE:
TEAM MEMBERS: Lisa Leombruni Heather Hodges
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis
resource project Media and Technology
This Smart and Connected Community (SCC) project will partner with two rural communities to develop STEMports, an innovative Science, Technology, Engineering and Mathematics (STEM) learning game for workforce development. The game's activities will take players on localized Augmented Reality (AR) missions to both engage in STEM learning challenges and discover emerging STEM careers in their community, specifically highlighting innovations in the fields of sustainable agriculture and aquaculture, forest products, and renewable energy. Community Advisory Teams (CATs) and co-design teams, including youth, representatives from the targeted emerging STEM economies, and decision-makers will partner with project staff to co-design STEMports that reflect the interests, cultural contexts, and envisioned STEM industries of the future for each community.

The project will: (a) design and pilot an AR game for community STEM workforce development; (b) develop and adapt a community engagement process that optimizes community networking for co-designing the gaming application and online community; and (c) advance a scalable process for wider applications of STEMports. This project is a collaboration between the Maine Mathematics and Science Alliance and the Field Day Lab at the University of Wisconsin-Madison to both build and research the co-designing of a SCC based within an AR environment. The project will contribute knowledge to the informal STEM learning, community development, and education technology fields in four major ways:


Deepening the understanding of how innovative technological tools support rural community STEM knowledge building as well as STEM identity and workforce interest.
Identifying design principles for co-designing the STEMports community related to the technological design process.
Developing social network approaches and analytics to better understand the social dimensions and community connections fostered by the STEMport community.
Understanding how participants' online and offline interactions with individuals and experiences builds networks and knowledge within a SCC.


With the scaling of use by an ever-growing community of players, STEMports will provide a new AR-based genre of public participation in STEM and collective decision making. The research findings will add to the emerging literature on community-wide education, innovative education technologies, informal STEM learning (especially place-based learning and STEM ecosystems), and participatory design research.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Byrd Sue Allen Gary Lewis Ruth Kermish-Allen David Gagnon
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens
resource research Public Programs
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
DATE:
TEAM MEMBERS: Bronwyn Bevan Kylie Peppler Mark Rosin Lynn Scarff Lissa Soep Jen Wong
resource research Professional Development, Conferences, and Networks
With support from the National Science Foundation, the STEM Effect project was undertaken in partnership by staff from the Education Development Center, the National Girls Collaborative Project (NGCP) and the Intrepid Sea, Air & Space Museum. Through a variety of methods, the project convened representatives from cultural institutions (museums, science centers, zoos, botanical gardens and aquaria) from across the country which provide STEM programming aimed at increasing the participation of girls and women in science, technology, engineering and mathematics (STEM), along with researchers, and
DATE:
TEAM MEMBERS: Lynda Kennedy Babette Moeller Alicia Santiago Sheri Levinsky-Raskin Wendy Martin Karen Peterson Goodman Research Group
resource project Exhibitions
Implementation of a permanent exhibit and supporting programs exploring themes of labor, immigration, and the changing nature of work and community in New Bedford’s commercial fishing industry.

To produce "More Than a Job: Work and Community in New Bedford’s Commercial Fishing Industry," a permanent exhibit, digital exhibits, K-12 curriculum materials, and significant public programming exploring themes of labor and immigration, and the changing nature of work and community in New Bedford's commercial fishing industry.
DATE: -
TEAM MEMBERS: Laura Corinne Orleans
resource project Informal/Formal Connections
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.

Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Aaron Wilson Sergey Grigorian Xiaohui Wang Mayra Ortiz
resource project Public Programs
The Apsáalooke (Crow Indian) Nation in Montana, as well as other Indigenous communities across the United States, disproportionally experience negative consequences from water-related environmental hazards, such as contaminated water. In this project, fifth- and sixth-grade Apsáalooke youth will act as change agents through investigating water issues in their communities and presenting findings to their communities. They will conduct this water-related research in the context of an informal summer program designed to integrate Indigenous and Western perspectives on science. For example, youth will learn the cultural significance of water sites while also practicing methods for collecting and analyzing data relative to those sites, guided by Apsáalooke elders and science professionals. During the summer program, Indigenous high school students and tribal college students will mentor the youth. To develop this program, the project team will conduct interviews with elders and Apsáalooke community members in scientific fields to determine the desired features of a program that integrates Indigenous and Western science. They will use the findings from these interviews to develop a multimedia toolkit, which includes a set of comprehensive materials that will enable other researchers and informal educators to implement similar programs. This toolkit will include information about water science and water quality, lesson plans and related resources for the summer program, professional development materials to prepare the high school youth to act as mentors, handouts for family members to facilitate at-home engagement with their children, and more. The project team will research how the implementation of the toolkit influences the participants' water-related knowledge and attitudes toward science. The toolkit, and the associated empirical findings, will be disseminated widely through local, regional, and national professional networks that serve American Indians.

Montana State University, in partnership with Little Big Horn College, will implement and research an informal summer program for Apsáalooke youth in the fifth and sixth grades, as well as a mentorship program for Indigenous high school students and tribal college students. The older students will participate in a four-week internship program in which they learn about conducting water research and facilitating science activities that foreground Apsáalooke perspectives and cultural practices. The high school and tribal college students will partner with Apsáalooke elders and science professionals to facilitate and implement a two-week summer program for the fifth- and sixth-grade youth. This program will use the toolkit materials that were previously developed in consultation with elders and other community stakeholders. Regression analyses of validated pre- and post-surveys, as well as inductive analyses of interviews with stakeholders, will be used to study how the mentoring program affects the high school and tribal college students' attitudes toward science and career interests, and how the summer program affects the fifth- and sixth-graders' water-related knowledge. The research team will also study how youth participation in the program affects their family and community members' water-related knowledge. This project will result in a multimedia toolkit, freely available to the public and widely disseminated through professional networks, which specifies how other informal educators and researchers can implement similar mentorship programs and summer programs for Indigenous youth. Ultimately, this project will broaden participation through resulting in empirically-tested materials that advance practice in informal education for Indigenous youth and their communities. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (science, technology, engineering, and mathematics) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Vanessa Simonds
resource project Media and Technology
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tino Nyawelo John Matthews Jordan Gerton Sarah Braden
resource project Professional Development, Conferences, and Networks
In the 1990s, Science Cafes emerged that brought together people from all walks of life with scientists in conversation over science, technology, engineering, and mathematics (STEM) topics. The cafes were popular as conversations were informal in casual settings and engendered deep discussions. In 2007, Science Education Solutions received a grant from NSF and began an experiment to see if the adult science café model could be adapted to appeal to high school teens. The program, Café Scientifique New Mexico, became very popular with teens in towns across northern New Mexico. The blend of conversing with scientists about interesting science topics in an out-of-school social setting and digging deeper with hands on activities proved successful. The teen model was refined through trial and error and formal evaluation over several years. Today it continues to provide teens with a new perspective on the nature of science and a picture of scientists as real people leading interesting lives. The Teen Science Café Network (TSCN) was formed in 2012 with NSF funding to allow other individuals and organizations to start their own versions of the Teen Science Café, adapted to their local institutions and demographics. Five founding member organizations around the United States formed the initial Network and each began creating their own Teen Science Café programs. Today the TSCN is a dynamic, growing community of practice spread across the country with the mission of connecting high school teenagers with STEM and STEM experts via the science café model. The network currently has approximately 133 member organizations in 46 states and Canada. This project will move the network to a much larger scale by creating organization and professional support structures to create a strategically growing social movement with distributed leadership, organizational infrastructure, and robust professional development for long-term stability with a goal to increase the number of member organizations to 500 over five years. Building on the literature on professional development for informal science educators and the literature on network capacity building, network sustainability, and scale, the project will also conduct research that will inform the field about successful model diffusion. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants.

This Innovations in Development project has five objectives. The first is to re-structure the Teen Science Café Network (TSCN) to a more distributed leadership model that will move the network to long-term sustainability. The PI team will identify five experienced individuals already leading strong café programs to become Guides for new sites. These Guides will provide training, support, and mentorship to new network members. Each Guide will have responsibility over a given year for mentoring two cohorts of nine sites, allowing the network to increase in size over the next five years. The second objective is to implement an interactive program of professional development for new network members. The training will involve approximately 15 hours of adult leader training focused on building skills around teen engagement and café management. The third objective will be to strategically engage all members in the network community of practice through opportunities to participate in and lead ongoing learning with their peers. Through webinars, Birds of a Feather groups and annual workshops and a Science Events Summit, café leaders will actively hone professional skills and broaden their personal network. Objective four is to broaden the involvement of organizations and communities not currently in the network through strategic recruitment of STEM professional societies, military youth programs, library networks, and youth-serving organizations, among other organizations. Finally, objective five is to implement a research agenda to contribute to the informal learning knowledge base. The research will focus on how the project's approach to network growth and distributed leadership leads to effective scaling and sustainability.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Public Programs
Makerspaces are learning environments that engage participants in authentic science and engineering practices, using hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Recently there has been a rapid growth of makerspaces in schools and in informal places like museums, libraries, and community centers. However, many of these spaces are not accessible to all members of society. This project will produce a model for a STEM makerspace that focuses on increasing access. The model has four critical components that operate together: affordable housing, informal STEM learning, maker education, and multi-generational learning. This project will develop and study the community-based, multigenerational makerspace model for Bayview Towers, a 200-unit affordable housing complex in Connecticut. The Multi-Gen STEM Makerspaces project brings together CAST, a non-profit education research organization, the NHP Foundation/Operation Pathways, a national affordable housing provider, and the Boston University Social Learning Lab, which researches the social context for STEM learning. The project will produce a Multi-Gen Maker Playbook comprised of an educational guide for a series of four-week workshops around different themes and modes of making. The Playbook will also serve as a program model that guides similar communities on how to create and run sustainable and thriving maker programs of their own. Families in the Bayview Towers community will build an understanding of science, technology, engineering, and mathematics (STEM) concepts through participation in an onsite makerspace. Families will relate what they are doing through making to longer-term goals connected to STEM learning, education, and careers. The project will also enable the engagement of individuals in the co-design (individuals provide creative contributions) of making that can be translated into community structures and values that support a sustainable makerspace. The affordable housing context will provide understanding of individual and other social factors that impact learners' sense of STEM identity. The project will support mobility from poverty by including STEM learning as part of the resident services.

The research will examine how low income communities access, engage, and learn in makerspaces, and relate their learning to relevant goals. The team will use design-based research (DBR) whereby participants and researchers work together to design interventions intended to explore theory through cycles of enactment, analysis, and revision. The DBR research will answer the following questions:


In what ways, if any, does the model support residents experiencing STEM learning as consequential?
What kind of making goals do residents set and how do they embed STEM in these goals?
If residents experience STEM learning as consequential through the workshops, do they also see the relationship between their making goals and longer term goals?
Do those residents that use the makerspace more frequently experience more positive outcomes in terms of consequential STEM learning?
How do the various makerspace structures - training of facilitators, dedicated space and equipment, Playbook - support the model?
Are groups of residents participating regularly in the makerspace and if so, who is in these groups? Do these groups start to identify as a maker community? Is the community finding the makerspace of value?
In what ways does the organization and operations of the makerspace support building a sustainable model for multigenerational and consequential learning?


Participants will include 90 youth and 90 adults from the resident community at Bayview Towers. Research data to be collected includes open-ended response measures for scoring residents' interpretation, analysis and understanding of each workshop elements. Also, interview protocols will be used to guide the refinement of the Multi-Gen Maker Playbook features and analyze usability, feasibility, engagement and user experience of the Multi-Gen Maker Playbook within the platform. The program will use semi-structured interview protocols on participants' goals and STEM identity and focus group protocols on community maker values and makerspace structures. Additionally, a Likert-style survey on STEM identity will also be adapted from the Science Identity Scale. Project evaluation will examine the overall achievement of program goals and objectives. Project results will be communicated by traditional means of dissemination to scholars and practitioners. The team will also create targeted digital media, including online articles, podcast interviews, and blog posts, to reach a broader audience.


This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sam Catherine Johnston Kathleen Corriveau Jess Gropen Kim Ducharme Kenneth White