Skip to main content

Community Repository Search Results

resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
Purpose: This project team will develop and test Zaption, a mobile and desktop platform designed to support educators in effectively and efficiently utilizing video (e.g., from YouTube, Vimeo, or their own desktop) as an interactive teaching and learning object. Personalized learning devices (e.g., smartphones, tablets) populated with video content provide opportunities for students to access educationally-meaningful content anywhere and anytime. Yet, video has yet to realize its potential as a learning tool in or out of the classroom. One reason for this is that watching video can be a passive experience for students, whereas learning requires active engagement. A second reason is that even if students are actively engaged while watching a video, there is no easy way to elicit student responses to a video. And finally, there is no easy way to feed student responses to teachers as formative assessment data to guide subsequent instruction.

Project Activities: During Phase I, (completed in 2014), the team expanded a pre-existing prototype by building a mobile app to enable anytime use and increase its functionality for teachers. At the end of Phase I, pilot research with 150 students in 7 classrooms demonstrated that the prototype operated as intended, teachers were able to integrate the videos within instructional practice, and students found the mobile app helpful and engaging. In Phase II, the team will add additional components to the prototype and will develop content-specific modules for use in high school physics classes. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Zaption for supporting student's physics learning. The study will include 32 Grade 10 physics classrooms, half of whom will be randomly assigned to use Zaption and half of whom will follow business as usual procedures. Analyses will compare pre-and-post scores of student's physics learning.

Product: Zaption will be a mobile and web-based platform to support the use of any video (e.g., from YouTube, Vimeo, or their own desktop) as a teaching and learning tool. Zaption will include an authoring engine where users can find and select video clips and easily insert interactive elements such as questions, discussions, and annotations into the videos. Users will then publish videos directly on Zaption's website, or on any learning management system or classroom website. Students will be able to view videos as homework or in class, respond individually to the questions and prompts, and get feedback on their responses. Teachers will use Zaption Analytics to receive immediate and actionable data showing whether students actually watched and engaged with a video, and how students responded to the questions and prompts.
DATE: -
TEAM MEMBERS: Chris Walsh
resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze
resource project Media and Technology
This CRPA award deals with inspiring youth to science careers and specifically in space science. The Green Bank Telescope in collaboration with the Pulsar Search Collaboratory, the National Radio Astronomy Observatory, and West Virginia University will develop a documentary film describing what pulsars are, how they are identified, and how youths participate in these investigations and discoveries. Through this experience youths learn aspects of space science, mathematics, physics, and computational science. Several young students have discovered new pulsars. The film will describe the concepts behind pulsars, how they are identified, and how the students can participate. The idea here is that potential students will see that other kids are participating and they may be successful as well. In the film, several well known scientists will be interviewed including Neil degrasse Tyson, Director of the Hayden Planetarium and Dame Jocelyn Bell-Burnell, the lady in Great Britain who discovered the first pulsar. Moreover, they will interview several young scientists who discovered the most recent pulsars through this program. The objectives of this effort are to be inspirational to young people and to engage the public with the concepts of space science and pulsars.
DATE: -
TEAM MEMBERS: Maura McLaughlin Sue Ann Heatherly Rachel Rosen Sarah Scoles
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a media project that created a documentary film about the Pulsar Search Collaboratory, as well as developing programming to be used both in the classroom and in diverse settings throughout the community.
DATE:
TEAM MEMBERS: Maura McLaughlin Sara Kolberg Megan Moore
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Media and Technology
Curious Scientific Investigators (CSI): Flight Adventures immerses children and families in science, technology, engineering, and math (STEM) disciplines. Launched in February 2012, the project supports NASA’s Aeronautics Research Mission Directorate (ARMD), focusing on “innovative ideas to convey the fundamentals of flight, flight technology, and NASA’s role in aeronautics.” The project’s audience includes youth ages 6-18 and the Museum’s more than 1 million annual visitors of all ages. The project’s lead agency, The Children’s Museum of Indianapolis (Museum), developed and implemented the project in Indianapolis in partnership with the Academy of Model Aeronautics and NASA Dryden Flight Research Center. The project’s goals focus on inspiring children and families to develop an interest in STEM concepts and learn about NASA’s role in science and aeronautics research and the evolution of flight, and on engaging and educating them through inquiry-based programs that facilitate understanding of STEM concepts and knowledge and NASA’s contributions to flight. Centered on an original Multimedia Planetarium Show on flight, Flight Adventures, the Museum designed several components, all of which complement the show and the messages it conveys. Among these components are an exhibit area composed of a movable wind tunnel, a display of models, low- and high-tech interactives; a Unit of Study; a TV show, Wings Over Indiana; a website; and a variety of educational and family programs.
DATE: -
TEAM MEMBERS: Jennifer Pace-Robinson Gordon Schimmel
resource evaluation Media and Technology
Goodman Research Group, Inc., (GRG), Cambridge, MA, conducted the formative evaluation of The Music Instinct project. The NSF-funded project aims to bring to PBS viewers the strong evidence of the connections between music and science, as well as to facilitate a deeper understanding of both fields. The Music Instinct project, presented by WNET/Thirteen, in collaboration with Mannes Productions, includes a two-hour television program, a website, and ancillary educational materials. The purpose of the formative evaluation is to obtain timely information to support and guide the producers as they
DATE:
TEAM MEMBERS: Rucha Londhe Miriam Kochman Nivedita Ranade Irene F Goodman WNET/Thirteen Mannes Productions Inc.
resource evaluation Media and Technology
In 2008, Goodman Research Group, Inc. (GRG) conducted summative evaluation of Absolute Zero, a collaborative effort of the University of Oregon's Cryogenic Helium Turbulence Laboratory and Twin Cities Public Television. The films were produced by Meridian/Windfall Productions, Washington DC, and/Windfall Films in London, UK. Outreach was spearheaded by Devillier Communications, Inc. The Absolute Zero project was centered on a two-part documentary about low-temperature physics, which aired on PBS/NOVA in early January 2008, as well as an outreach campaign, which included approximately 20
DATE:
TEAM MEMBERS: Irene Goodman University of Oregon Laura Houseman Marianne McPherson
resource project Media and Technology
The objective of this youth media project is to provide 14-24 year olds with training and hands-on experience in engineering, and the physical and biological sciences. The project is designed around core practices that engage youth in original research and inquiry through experimentation, development, and creative use of new technologies and tools to communicate STEM to the public. Youth Radio project participants in Oakland, CA, Atlanta, GA and Washington, DC include 540 youth, 80% of whom are low-income and/or youth of color, plus another 400 youth via off-site outreach in schools and community centers. Core deliverables include: (1) "Brains and Beakers," eight live events per year where a visiting STEM researcher brings his/her work out of the lab and onto the stage at Youth Radio facilities, demonstrating key principles and discoveries and interacting with youth participants; (2) "Youth Radio Investigates," an annual 6-part multimedia series, where youth partner with university and industry-based researchers to explore the veracity of scientific claims applied to products and services and they use every day; (3) The "Application Development Lab," where youth develop, create and disseminate online embeddable and downloadable applications (12 annually) that serve real needs in youth communities. The digital media produced by the youth will be broadcast by National Public Radio and distributed online through various sites including iTunes and BoingBoing.net, one of the most frequently visited technology-focused sites on the web. Project advisors include STEM researchers in universities as well as highly experienced and successful new media technology developers. Project partners include National Public Radio, KQED, the California Academy of Sciences, and the Oakland Unified School District. This project builds on the successful prior work (NSF #0610272) that initiated a Science and Technology program within the Youth Radio organization. The summative evaluation by Rockman et al will measure how the program affects students' science and technology knowledge, skills, and attitudes. It will build on the evaluation from the prior NSF funded project (#0610272) that highlighted the organizational and staff growth processes as Youth Radio discovered how to design and implement successful, sustainable STEM programs. Rockman will evaluate the new programs (Youth Investigates, Brains and Beakers, and the Application Lab), measuring the following STEM-related student outcomes/impacts: perceptions of selves as producers/creators of science or technology; attitudes toward science and perceptions of scientists; understanding the process of scientific inquiry and research and/or technology skills development; and understanding or interest in careers in science or technology (based on National Research Council report, 2009). Data will be collected from the youth at the Oakland site and from the other Youth Radio bureaus to determine which aspects of the program transfer to multiple sites and which ones are unique to a specific location or set of circumstances. Methods include surveys of student attitudes, participant focus groups, interim assessments, objective skills assessments, and interviews. This project provides an innovative new model for collaborations between STEM researchers and under-represented youth resulting in digital media that impacts the youth as well as the public's understanding and engagement in science.
DATE: -
TEAM MEMBERS: Ellin O'Leary
resource project Media and Technology
Independent Production Fund is producing a three-part public television series focusing on the latest research in the science of music. The programs will explore how cutting-edge science is revealing new connections between music and the human mind and body, the natural world and the cosmos. The series will follow researchers from a variety of fields including physiology, neuroscience, psychology, biology, physics and education, as they use groundbreaking techniques and technologies to unravel age-old mysteries about music\'s persistence, universality and emotional power. It will show how these researchers are shedding valuable new light on the way brains work. The impact of the programs will be extended through a content-rich companion web site and innovative formal and informal educational-outreach materials to both middle and high school age students, as well as a complementary radio component. Mannes Productions will produce the series; Goodman Research Group will conduct formative evaluation and Rockman et al will conduct summative evaluation.
DATE: -
TEAM MEMBERS: Elena Mannes
resource project Media and Technology
Independent Production Fund is producing a three-part public television series focusing on the latest research in the science of music. The programs will explore how cutting-edge science is revealing new connections between music and the human mind and body, the natural world and the cosmos. The series will follow researchers from a variety of fields including physiology, neuroscience, psychology, biology, physics and education, as they use groundbreaking techniques and technologies to unravel age-old mysteries about music's persistence, universality and emotional power. It will show how these researchers are shedding valuable new light on the way brains work. The impact of the programs will be extended through a content-rich companion web site and innovative formal and informal educational-outreach materials to both middle and high school age students, as well as a complementary radio component. Mannes Productions will produce the series; Goodman Research Group will conduct formative evaluation and Rockman et al will conduct summative evaluation.
DATE: -
TEAM MEMBERS: Elena Mannes