Skip to main content

Community Repository Search Results

resource project Public Programs
Maker education has increased tremendously in community settings and classrooms across the country. Maker education is learner-driven and hands-on, often collaborative, and may focus on solving a problem or designing an object or device. There is a growing need for assessment and evaluation tools and approaches to understand and improve the nature of maker learning and provide evidence for the value of maker pedagogy. This workshop will bring together approximately 25 researchers from formal and informal settings as well as practitioners to review current maker assessment and evaluation tools and examine the role those tools can play for informing research and practice. The workshop will identify areas where future work is needed, including designing assessment and evaluation that effectively addresses the interests and needs of diverse learners. The workshop will disseminate an online collection of these assessment and evaluation tools, a research brief, and several webinars sharing the results and recommendations of the conference.

The two-day, in-person conference will include pre-workshop surveys to determine and refine issues for consideration at the conference, identify a core set of readings and resources for conference participants, and to identify key topics for research briefings presented at the conference. The conference will include background briefings, hands-on try-outs of assessment tools, synthesis discussions, and identification of future directions for research and next steps. Resources developed from the workshop will be widely disseminated through workshop partner Maker Education’s website, an annual maker conference held at the University of Wisconsin, and through other publications reaching researchers and practitioners in informal and formal educational settings,

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
resource project Public Programs
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.

The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Jill Castek Leslie Sult Jennifer Nichols Kevin Bonine Blaine Smith
resource project Public Programs
Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project addresses the following two objectives:


For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.


The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.

AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:


broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.


Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sheryl Burgstahler Meena Selvakumar
resource evaluation Public Programs
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2015. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from a Membership study, a formative evaluation of a new Makerspace exhibition, and program evaluation of a workshop for the
DATE:
TEAM MEMBERS: Elisa Israel Sara Davis Kelley Staab Morey Group
resource project Public Programs
Brokering Youth Pathways was created to share tools and techniques around the youth development practice of “brokering” or connecting youth to future learning opportunities and resources.

This toolkit shares ways in which various out-of-school educators and professionals have approached the challenge of brokering. It provides a framework, practice briefs and reports that focus on a particular issue or challenge and provide concrete examples, as well as illustrate how project partners partners worked through designing new brokering routines in partnership with a research team.
DATE: -
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell