Skip to main content

Community Repository Search Results

resource research Public Programs
This paper attempts to reframe popular notions of “failure” as recently celebrated in the Maker Movement, Silicon Valley, and beyond. Building on Vossoughi et al.’s 2013 FabLearn publication describing how a focus on iterations/drafts can serve as an equity-oriented pedagogical move in afterschool tinkering contexts, we explore what it means for afterschool youth and educators to persist through unexpected challenges when using an iterative design process in their tinkering projects. More specifically, this paper describes: 1) how young women in a program geared toward increasing equitable
DATE:
TEAM MEMBERS: Jean Ryoo Nicole Bulalacao Linda Kekelis Emily McLeod Ben Henriquez
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource research Public Programs
"Making and Tinkering" links science, technology, engineering and mathematics learning (STEM) to the do-it-yourself "maker" movement, where people of all ages "create and share things in both the digital and physical world" (Resnick & Rosenbaum, 2013). This paper examines designing what Resnick and Rosenbaum (2013) call "contexts for tinkerability" within the social design experiment of El Pueblo Mágico (EPM) -- a design approach organized around a cultural historical view of learning and development. We argue that this theoretical perspective reorganizes normative approaches to STEM education
DATE:
TEAM MEMBERS: Lisa Schwartz Daniela Digiacomo Kris Gutierrez
resource research Public Programs
Maker Education scholarship is accumulating increasingly complex understandings of the kinds of learning associated with maker practices along with principles and pedagogies that support such learning. However, even as large investments are being made to spread maker education, there is little understanding of how organizations that are intended targets of such investments learn to develop new maker related educational programs. Using the framework of Expansive Learning, focusing on organizational learning processes resulting in new and unfolding forms of activity, this paper begins to fill
DATE:
resource project Professional Development, Conferences, and Networks
The University of Washington, the Exploratorium, the Education Development Center, Inverness Research, and the University of Colorado - Boulder have come together to form a Research+Practice (R+P) Collaboratory. The Collaboratory seeks to address and reframe the gap between research and practice in K-12 STEM education. This gap persists despite decades of work by many leading organizations, associations, and individuals. Attempts to close the gap have generally focused on creating resources and mechanisms that first explain or illustrate "what research says" and then invite educators to access and integrate findings into practice. Recently, however, attention has turned to the ways in which the medical sciences are addressing the gap between research and clinical practice through the developing field of "translational research." In medicine, the strategy has been to shift the focus from adoption to adaptation of research into practice. Implicit in the notion of adaptation is a bi-directional process of cultural exchange in which both researchers and practitioners come to understand how the knowledge products of each field can strengthen the professional activities in the other. Along these lines, the R+P Collaboratory is working with leading professional associations and STEM improvement efforts to leverage their existing knowledge and experience and to build sustainable strategies for closing the gap. Activities include:


Collecting, creating and synthesizing translational research resources to expand STEM educators' and educational leaders' access and awareness to current relevant research.
Supporting multiple opportunities for cross-sector (research and practice; education and social sciences; formal and informal) meetings to foster critical engagement and cultural exchange.
Testing, documenting and innovating new resources and mechanisms at Adaptation Sites and disseminating both products and results through the R+P Resource Center.


The R+P Collaboratory is developing an online 'Go-To' Resource Center website that houses the resources collected, created, and curated by the Collaboratory. The Resource Center also has significant 'Take-Out' features, with all materials meta-tagged so that they can be automatically uploaded, reformatted, and integrated into the existing communication and professional development mechanisms (e.g., newsletters, digests, conferences, and websites) of a dozen leading professional associations within a Professional Association Partner Network.

In light of new and emerging standards in the STEM disciplines, the Collaboratory is focusing its work on four salient and timely bodies of research: (a) STEM Practices, (b) Formative Assessment, (c) Cyberlearning, and (d) Learning as a Cross-Setting Phenomenon. Special emphasis is being placed on research and practice that focuses on the learning of children and youth from communities historically underrepresented in STEM fields.

The work of the R+P Collaboratory includes research and evaluation of its own efforts through studies aimed at answering the following questions:


How are Collaboratory resources and engagement activities accessed, experienced and leveraged by participants?
What resources, mechanisms and learning contexts support cultural exchange among STEM education researchers and practitioners?
What new kinds of practices result when research-based evidence is adapted into evidence-based practices, and how does it change learning opportunities for K-12 aged children?
How can effective strategies, mechanisms and resources of the Collaboratory be scaled and adapted to new contexts?
DATE: -
resource research Public Programs
The HMCS Yukon is a 366 ft. long former Canadian warship that was sunk in about 100 ft. of water off the coast of San Diego, California ( 32.7800, -117.2853) in 2000 to act as an artificial reef. The first scientific study of the marine life on the Yukon was done in 2005 by the San Diego Oceans Foundation and Dr. Ed Parnell of Scripps Institution of Oceanography. This study will document the current changes in the marine biodiversity that has colonized the shipwreck since the previous study. High resolution cameras and iNaturalist , a citizen science app which is maintained by the California
DATE:
TEAM MEMBERS: Barbara Lloyd
resource research Public Programs
This dissertation study investigates late-elementary and early-middle school field trips to a mathematics exhibition called Math Moves!. Developed by and currently installed at four science museums across the United States, Math Moves! is a suite of interactive technologies designed to engage visitors in open-ended explorations of ratio and proportion. Math Moves! exhibits emphasize embodied interaction and movement, through kinesthetic, multi-sensory, multi-party, and whole-body immersive experiences. Many science museums and other informal-learning institutions offer exhibits and public
DATE:
TEAM MEMBERS: Molly Louise Kelton
resource project Public Programs
The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE: -
TEAM MEMBERS: Ricardo Nemirovsky Rogers Hall Martha Alibali Mitchell Nathan Kevin Leander
resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan
resource research Public Programs
By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family’s choice that they associated with science learning. Some families
DATE:
TEAM MEMBERS: Suzanne Perin
resource project Public Programs
In collaboration with a wide variety of non-profit organizations (Project SYNCERE, Little Village Environmental Justice Organization, Chicago Freedom School, Chicago Botanic Garden, Friends of the Chicago River, Institute for Latino Progress), the University of Chicago-Illinois seeks to prepare 30 new science teaching fellows (TFs) while building the capacity of 10 master teaching fellows (MTFs) to be leaders in urban science education. The project will address the professional development of all participants through a three-pronged mechanism which emphasizes (a) content-specific information that focuses on Next Generation Science Standards, (b) culturally relevant practices, and (c) teacher inquiry/research. The work will be performed in partnership with the Chicago Public Schools.

Recent graduates, career changers, and in-service Master Teachers will be provided with (a) a broad range of science concentrations including biology, chemistry, earth and space science, environmental science, and physics, (b) a unique urban perspective on science education that emphasizes diverse learning assets and equity, and (c) professional development opportunities within a community of faculty, teacher-leaders, and non-profit organizations. TFs will be prepared for licensure while earning a Master's in Instructional Leadership: Science Education, learning to teach and examine their practice as it relates to teaching, and learning within specific communities. MTFs will learn to conduct practitioner research and lead teacher inquiry groups examining essential and enduring challenges in STEM teacher practice and student learning. Formative and summative evaluation will focus on analysis of both qualitative and quantitative data related to degree and licensure attainment, the various teaching practice activities (lesson plans, participant surveys, etc.), and progress in meeting the overarching project goals. In doing so, the project will advance knowledge and understanding of the role played by community-based partnerships of university faculty, school teacher-leaders, and local non-profit entities in enhancing teacher education and development, and the circumstances that promote their success. The results of this work will be presented at national meetings of the American Educational Research Association and the American Association of Colleges of Teacher Education
DATE: -
TEAM MEMBERS: Maria Varelas Chandra James Carole Mitchener Aixa Alfonso Daniel Morales-Doyle