Skip to main content

Community Repository Search Results

resource research Media and Technology
Abstract In 2011, Donna DiBartolomeo and Zachary Clark enrolled in the Arts in Education Program at Harvard Graduate School of Education. Harvard Graduate School of Education is home to Project Zero, an educational research group comprising multiple, independently funded projects examining creativity, ethics, understanding, and other aspects of learning and its processes. Under the guidance of Principal Investigator Howard Gardner and Project Manager Katie Davis, the authors were tasked with developing a methodology capable of observing finegrained, objective detail in complete works of
DATE:
TEAM MEMBERS: Donna DiBartolomeo Zachary Clark
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program supports new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This project will meet this goal through rigorous research and the broad implementation of an environmental science literacy professional development and learning program for informal educators and youth engaged in outdoor science programs (OSP). With growing support from the literature and the Next Generation Science Standards (NGSS), much attention has been placed on creating and leveraging interdisciplinary science learning opportunities beyond science classrooms. As such, an estimated 300 residential OSPs currently exist in the United States. Unfortunately, the informal educators often charged with facilitating these deep and impactful science learning experiences often lack robust formal training in evidenced-based, age-appropriate environmental science content knowledge and pedagogy specific for the youth in their programs. This issue is often more pronounced in under-resourced and under-served programs and communities. This project will directly address these pervasive challenges in the field by not only providing much needed science focused professional development and resources to informal educators but also by specifically targeting and training informal leaders and educators serving youth in predominately rural areas, low-income communities, and underrepresented communities.

Approximately 200 OSP leaders at 100 OSPs around the country will participate in a week-long, intensive training in the professional development model at one of five regional residential leadership institutes. OSP leaders will then redeliver the training to the approximately 1,500 OSP educators/field instructors in their home institutions. The OSP educators/field instructors will then use what they learn through the professional development to facilitate the environmental science learning program (i.e., curriculum, field experiences, resources, pedagogy) to over 1 million youth (grades 3-8) enrolled in their residential outdoor science programs. In addition, a rigorous implementation study, efficacy study and evaluation will be conducted. The implementation study will investigate: (a) Which of the professional learning model practices were implemented and (b) What successes and challenges the programs faced implementing the model. The mixed methods efficacy study will explore: (a) if outdoor science programs contribute to the development of science learning activation and environmental literacy? and (b) what are the features of these experiences that are correlated with increases in science learning activation and environmental literacy. Approximately 25-35 youth will be randomly selected from each of 50 randomly selected sites to participate in the efficacy study. The data and findings from the research and evaluation produced by this project will contribute to a relatively sparse knowledge and research base specific to youth efficacy and implementation processes and practices across nearly 1/3 of the estimated 300 existing residential outdoor science programs in the United States.
DATE: -
TEAM MEMBERS: Craig Strang Rena Dorph
resource project Public Programs
This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of Science, Technology, Engineering, and Mathematics (STEM) learning in informal environments. Roughly one million refugees resettled in the United States in the past decade, many of whom are school-aged youth. During secondary school, resettled refugee youth are often still developing English language literacy and STEM skills needed for successful postsecondary experiences in the United States. At the same time, these youth bring rich cultural and linguistic resources that they can use as an asset as they grow their STEM skill sets, prepare for future success, and make positive impacts on U.S. society. To promote these assets and engage youth in developing STEM literacy, this after-school program engages these youth in critical STEM literacy development. The project focuses on STEM learning, specifically the relationship between human life and climate, as well as developing youths' STEM identities and agency.

The project will develop and implement a community-based afterschool program that provides resettled Burmese refugee youth with STEM learning experiences. By drawing upon youths' experiences, the program will engage youth in learning about climate science and developing digital stories to communicate with broader audiences. To do so, the team will implement a program that builds on principles of responsive teaching, funds of knowledge, and English literacy development in authentic meaning-making contexts. The project will examine how youth expand their STEM knowledge, develop STEM identities and agency, and develop their expertise in communicating about STEM within and beyond their participation in the after-school program. The research team will explore existing and innovative data collection and analysis methods by drawing on principles of ethnography, video ethnography, mediated discourse analysis, and phenomenological and ethnomethodological analysis of interviews. These analyses will document learning over time in informal STEM learning settings. As there is very little prior research on STEM learning in this population, this project will generate knowledge about how to support STEM sense-making and critical STEM literacy. Furthermore, by testing the designed curriculum and building a partnership with a local community organization, the project will build capacity for broadening participation in informal STEM learning practices.
DATE: -
TEAM MEMBERS: Minjung Ryu Shannon Mary Daniel
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE: -
TEAM MEMBERS: Corrin Barros Koh Ming Wei Danko Tabrosi Emerson Odango
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. How can we come to terms with the complex social impact of new cutting-edge fields like synthetic biology, robotics, genetics and machine learning? In order to manage these transformative changes, people not only need to understand science and technology, but also to actively participate in shaping a world where our ability to control the building blocks of life and cognition is vastly expanded. The Transmedia Museum will use the interactive, engaging nature of
DATE:
TEAM MEMBERS: Ed Finn Steve Gano Ruth Wylie David Guston Micah Lande Rae Ostman
resource research Public Programs
In this article, we invite you to expand your vision of what it means to work at the intersections of formal and informal science and literacy education by describing how educators have collaborated to create programs that blend science and literacy in schools, in museums, and across these two spaces. In 2012, K–12 teachers from the National Writing Project (NWP) began working with the Association of Science-Technology Centers (ASTC) and science museum educators in the National Science Foundation­–funded Intersections project, which is being evaluated by Inverness Research. NWP is a network
DATE:
TEAM MEMBERS: Tanya Baker Becky Carroll
resource project Media and Technology
This will be a unique video game based on the writings the American author Henry David Thoreau at Walden Pond. Designed and directed by game designer Tracy Fullerton, Walden, a game, will simulate the experiment in living made by Thoreau at Walden Pond in 1845-47, allowing players to walk in his virtual footsteps, attend to the tasks of living a self-reliant existence, discover in the beauty of a virtual landscape the ideas and writings of this unique philosopher, and cultivate through the game play their own thoughts and responses to the concepts discovered there. The humanities content of the game will focus on an interactive translation of Thoreau’s writings and will also include references to the historical context of those writings. The game takes place in the environment of 1845 New England, when new technologies such as the railroad, the telegraph were first being seen and were part of the changes to pace of life that Thoreau so articulately resisted in critiques of society.
DATE: -
TEAM MEMBERS: Tracy Fullerton
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Makerspaces are social spaces with tools, where individuals and groups conceptualize, design, and make things using new and old technologies. Literacy practices are the ways people use representational texts to navigate and make sense of their worlds. They are used in particular contexts with particular goals. By “representational texts” we mean written words, talk, photographs, diagrams, videos, schematics, computer code, electrical circuit diagrams
DATE:
TEAM MEMBERS: Eli Tucker-Raymond
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The Expanding Repertoires project is a collaboration between the Center of Science and Industry (COSI) and The Ohio State University (OSU) to begin the systematic study of science and children's museum programs and practice for preschool dual language learners (DLLs), their families, and the community organizations and early childhood professionals who serve them.
DATE:
TEAM MEMBERS: COSI Leslie Moore
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
DATE: -
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn