Skip to main content

Community Repository Search Results

resource evaluation Public Programs
The NSF-funded project titled An Informal Learning Model of Genetic and Genomic Education for Adult Bilingual Learners, was led by Joanne Sandberg, PhD. The project included three phases: Phase I: Investigation of knowledge and beliefs about transmission of traits, genetic and genomic concepts, gene-environment interactions, and environmental exposures in Latinx adults born in Mexico or Central America and who have limited literacy. Phase II: Development of two educational interventions in Spanish that address: Information about environmental exposures that can be detrimental to
DATE:
TEAM MEMBERS: Louisa Stark
resource evaluation Exhibitions
AlegreMENTE: Celebrando Conexiones Tempranas / Happy Brain: Celebrating Early Connections (hereafter referred to as AlegreMENTE) is a traveling exhibition designed for caregivers of children ages 0 to 5, seeking to convey research-based information that caregivers’ playful, loving interactions supports children’s brain development and has lifelong benefits. The bilingual, 1,500 square foot exhibition was developed by the Oregon Museum of Science & Industry (OMSI). For summative evaluation, the exhibition was installed and tested in two locations OMSI (a science center) and San Jose Children’s
DATE:
resource project Public Programs
The Louisiana Art & Science Museum (LASM) will conduct a three-year program, “Healthy Aging with LASM,” which will serve senior adults in the 11-parish capital region. The museum will implement the program in partnership with the Capital Area Agency on Aging, the East Baton Rouge Parish Council on Aging, the Baton Rouge General Arts in Medicine Program, and Dr. Rebecca Bartlett. Senior adults have faced unprecedented levels of isolation, stress, and health risk due to the COVID-19 pandemic. The museum will present virtual and in-person art and science programming designed to combat isolation, foster meaningful connections, and promote healthy aging. Programming will include virtual field trips, distribution of arts and science virtual reality headsets, and a series of hands-on arts workshops.
DATE: -
TEAM MEMBERS: Nita Mitchell
resource project Public Programs
The Hands On Children’s Museum will conduct an “Inspired Chefs” program that responds to community demand for children’s cooking education, promotes early STEAM learning, and supports the museum’s Good for You! Healthy Lifestyles initiative. The Inspired Chefs programming will include cooking classes and cooking camps for children and youth. They also plan to organize a new kitchen tools pop-up exhibit and redesign a garden shed in the children’s garden on the museum property to support seed-to-table programming. Community partners will include the Olympia Farmers Market, native plant and food educators, local chefs, and students from South Puget Sound Community College’s culinary program.
DATE: -
TEAM MEMBERS: Amanda Wilkening
resource evaluation Media and Technology
This assessment serves as the summative assessment of the IMLS-funded project at KU Biodiversity Institute and Natural History Museum: Natural History Mystery: Immersing families in a problem-solving game using museum collections. The assessment employs a mixed methods approach, in which both quantitative and qualitative data are collected. More specifically, quantitative data are generated from surveys that are administered to participants at the beginning and end of the game and analyzed by using descriptive statistics (i.e., mean, standard deviation, and histogram) and paired sample t-test
DATE:
TEAM MEMBERS: Haiying Long Teresa MacDonald
resource project Media and Technology
The University of Kansas Natural History Museum, in collaboration with the University of California Museum of Paleontology, will develop, test, and deploy an immersive educational game on the topic of evolution and common ancestry. The museum will frame the game with a narrative that involves tracing the origin of a zoonotic disease (infectious disease that is transmitted between species from animals to humans or from humans to animals). Played on the museum floor, the escape room-inspired game will explore innovative formats for museum learning and engagement. It is being designed for families with children ages 7 to 12, and by visiting groups of schoolchildren in grades 3 to 5.
DATE: -
TEAM MEMBERS: Teresa MacDonald
resource research Media and Technology
The news arguably serves to inform the quantitative reasoning (QR) of news audiences. Before one can contemplate how well the news serves this function, we first need to determine how much QR typical news stories require from readers. This paper assesses the amount of quantitative content present in a wide array of media sources, and the types of QR required for audiences to make sense of the information presented. We build a corpus of 230 US news reports across four topic areas (health, science, economy, and politics) in February 2020. After classifying reports for QR required at both the
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Elizabeth Attaway Uduak G. Thomas Shivani Ishwar Patti Parson Laura Santhanam Isabella Isaacs-Thomas
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Professional Development, Conferences, and Networks
Informal learning institutions--museums, libraries, news organizations, and others--work to inform their audiences about the rapidly emerging scientific consensus on various topics. Often this information invites action such as social distancing during a pandemic. What motivates people to act upon that information (or not)? When recommended actions can yield good or bad outcomes for oneself, the information needs to fit with motivational tendencies towards preventing bad outcomes and/or promoting good outcomes. Recent theories indicate similar motives for recommended actions that affect others: family, friends, neighbors, and up the scale to the societal and the biological world. This small virtual conference will bring together STEM researchers and practitioners to offer a transdisciplinary and practically minded critique of the model of moral motives and discuss its implications for actions related to STEM topics. Specifically, the conference will use data collected by NSF RAPID grant (#2027939) that connects people’s news consumption, their compliance with COVID-19 prevention recommendations, and their judgments of whose wellbeing (from self to society) recommended behaviors protect or promote.

This small virtual conference will recruit approximately 16 attendees including transdisciplinary scholars whose work addresses social responsibility in the context of STEM informal learning and practitioners from a broad range of sectors including science centers, libraries, zoos, and the media. Individual disciplines will include anthropology, psychology, the interdisciplinary fields of the learning sciences and judgement and decision-making. The conference strategy will include synchronous, asynchronous, and small group collaborations in addition to full-group discussion. Conference activities will spread over 8 weeks. The structure of the conference is loosely based on the Open Space Technology approach (i.e.: General & Lantelme, 2014, Owen 1997). To build capacity in these various informal learning sectors participants will distill implications about moral motives into practical advice to publish in the conference proceedings that will include a report on the initial and collaboratively revised models. An editable version of the proceedings will allow registered practitioners to further critique and develop that advice. The conference proceedings will be distributed as a short Creative Commons e-book with copies and links distributed on the website of the Center for Advancing Informal STEM Education , and through all the participant’s professional research and practitioner societies.
DATE: -
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.

The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.

In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.

Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
DATE: -
TEAM MEMBERS: Hilleary Osheroff Kristina Yu