Skip to main content

Community Repository Search Results

resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource research Media and Technology
Probably among the first to deal with it, nearly sixty years ago, Norbert Wiener, the founding father of cybernetics (The human use of human beings. Cybernetics and Society, Houghton Mifflin Company, London, 1950), prefigured its opportunities, as well as its limitations. Today, it is a quite common belief. We have entered (are entering) a new, great era in the history of human society: the age of information and knowledge.
DATE:
TEAM MEMBERS: Pietro Greco
resource project Public Programs
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE: -
TEAM MEMBERS: Robert Coulter Eric Klopfer Jere Confrey
resource project Media and Technology
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE: -
TEAM MEMBERS: Mitchel Resnick John Maeda Yasmin Kafai
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource research Media and Technology
In the many studies of games and young people's use of them, little has been written about an overall "ecology" of gaming, game design and play—mapping the ways that all the various elements, from coding to social practices to aesthetics, coexist in the game world. This volume looks at games as systems in which young users participate, as gamers, producers, and learners. The Ecology of Games (edited by Rules of Play author Katie Salen) aims to expand upon and add nuance to the debate over the value of games—which so far has been vociferous but overly polemical and surprisingly shallow. Game
DATE:
TEAM MEMBERS: Katie Salen
resource research Media and Technology
This paper illustrates the intensified engagement that youth are having with digital technologies and introduces a framework for examining digital fluency – the competencies, new representational practices, design sensibilities, ownership, and strategic expertise that a learner gains or demonstrates by using digital tools to gather, design, evaluate, critique, synthesize, and develop digital media artifacts, communication messages, or other electronic expressions. A primary goal of this paper is to identify promising perspectives through which learning is conceptualized, and to share the
DATE:
TEAM MEMBERS: Sherry Hsi
resource research Media and Technology
There is a growing commitment within science centres and museums to deploy computer-based exhibits to enhance participation and engage visitors with socio-scientific issues. As yet however, we have little understanding of the interaction and communication that arises with and around these forms of exhibits, and the extent to which they do indeed facilitate engagement. In this paper, we examine the use of novel computer-based exhibits to explore how people, both alone and with others, interact with and around installations. The data are drawn from video-based field studies of the conduct and
DATE:
TEAM MEMBERS: Robin Meisner Dirk vom Lehn Christian Heath Alex Burch Ben Gammon Molly Reisman
resource research Media and Technology
In this paper we discuss our approach to designing two public exhibitions, where our goal has been that of facilitating and supporting visitors' own contributions to the exhibits. The approach behind our work sees the role of technology that is supporting people's experiences of heritage as moving away from delivery of information, and towards enabling visitors to create the content of the exhibit. This approach is aimed at encouraging active reflection, discussion and appropriation, in the tradition of human-centred interaction design. In the paper we present two installations, "Re-Tracing
DATE:
TEAM MEMBERS: Luigina Ciolfi Liam Bannon Mikael Fernstrom
resource research Media and Technology
NSF's Cyberinfrastructure Vision for 21st Century Discovery is presented in a set of interrelated chapters that describe the various challenges and opportunities in the complementary areas that make up cyberinfrastructure: computing systems, data, information resources, networking, digitally enabled-sensors, instruments, virtual organizations, and observatories, along with an interoperable suite of software services and tools. This technology is complemented by the interdisciplinary teams of professionals that are responsible for its development, deployment and its use in transformative
DATE:
TEAM MEMBERS: National Science Foundation
resource research Media and Technology
As mobile devices are increasingly merging into our daily lives, exhibition services are also facing innovation based on the newly available technologies. Our project addresses these new circumstances. We developed a mobile exhibition guide for the exhibition called "Mrs Brown's Big Day Out: Hamilton Women in the 1950s". That is organized by the Waikato Museum. The proposed system re-uses the TIP (Tourist Information Provider) system's framework and provides information via mobile devices to visitors on Victoria Street, which is an outdoor part of the exhibition. The information about a sight
DATE:
TEAM MEMBERS: Jingyu Chen