Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
Materials play an important role in learning. Humans actors use materials in particular ways depending on the context and materials also can shape how human actors use materials. This study explores the dialogical relationship between the participants and materials in suminagashi, a Japanese paper marbling activity. We found that materials that are traditionally thought of as art materials, such as paintbrushes, are used to support practices often considered science practices, such as experimentation.
DATE:
TEAM MEMBERS: Blakely Tsurusaki Laura Conner Carrie Tzou
resource project Public Programs
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Dionne Champion
resource research Public Programs
This poster explores three programs that engage underrepresented youth in physics learning through dance.
DATE:
TEAM MEMBERS: Folshade Cromwell Solomon Tracey Wright Lawrence Pratt Vandana Singh Mariah Steele Robin Thompson Dionne Champion Christina Bebe
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource research Exhibitions
This article traces sound as it echoes through approaches to displaying the Science Museum’s acoustics collection over the course of the twentieth century. Focusing on three key moments in the collection’s historical development, the article explores the role of sound as both medium and object of museum display. Each moment exposes how the practice of using sound to interpret sounding objects was articulated and problematised by past generations of museum practitioners. Each moment, too, exposes the problem of sound as a potential threat to the cultural politics of a national museum
DATE:
TEAM MEMBERS: Jennifer Rich
resource project Media and Technology
The Clay Center for Arts and Sciences of West Virginia will create professional learning communities of teachers and after-school staff serving 7th grade students at seven partner schools using digital storytelling as a tool to explore energy-related topics impacting their communities. West Virginia's role as a leading coal producer and the impact of natural gas drilling served as strong influencing factors in the creation of this STEAM project, titled emPOWERed Stories. Students will create an exhibit that incorporates these digital stories. The results will inform the broader field on ways to better blend formal and informal education experiences to become more potent learning environments.
DATE: -
TEAM MEMBERS: William Jeffries
resource project Public Programs
The Liz Lerman Dance Exchange, in partnership with several universities and a science advisory committee of distinguished international researchers in physics and astronomy, is producing "The Matter of Origins," a two-part experimental program that engages the public in explorations of the nature of beginnings and the physics of the origin of matter. Act I takes place in a theater where audiences will experience a dance performance illuminated by video and a vivid soundscape. Act II takes place in an adjacent space where audiences, who will be seated with scientists, historians, philosophers, and religious leaders, can participate in facilitated dialogue about the nature of origins in an immersive environment that incorporates dance, projected images, and provocative questions. The program will be implemented around the country, initially at four universities, with possible expansion to additional venues. The goals of this EAGER project are (1) to develop an innovative model for using dance, digital media, and structured dialogue to attract and engage public audiences in science content and processes and (2) to explore how artistic practices may have broader applications with respect to science learning and research. The intention is to explore how science can be represented in the art and in the experience and not simply interpreted into abstract choreographic expression with a program note. The program elements and outcomes will be evaluated by researchers from Michigan State University who will study impacts on the public and on participating professionals - dancers, scientists, etc. Dissemination of results will be to professional communities in the sciences, arts and informal science education.
DATE: -
TEAM MEMBERS: Liz Lerman
resource project Public Programs
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
DATE: -
TEAM MEMBERS: Laura Conner Stephen Pompea Mareca Guthrie Carrie Tzou
resource project Public Programs
The Rochester Institute of Technology's National Technical Institute for the Deaf (NTID) and Center for Computational Relativity and Gravitation (CCRG) will collaborate on a CRPA project designed to develop a dance-based performance to educate deaf and hard of hearing students on astrophysics concepts. This project seeks to address the following goals: 1) provide all audience members with access to scientific information in an inherently engaging and stimulating manner; 2) facilitate the acquisition of scientific knowledge in all audience members, including deaf and hard-of-hearing individuals, with special reference to general information and basic concepts from the fields of gravitational physics and astrophysics; and 3) stimulate general interest in STEM fields within all audience members. An extensive team of physicists, arts faculty, computer scientists, performance experts, and evaluators have assembled to translate original research on gravity-based astrophysics, including collision events between black-holes and neutron-stars, entire galaxies, and the central black-hole engine that powers active galactic nuclei, into novel educational presentations. The original science to be presented was generated in part by the scientists at the Center for Computational Relativity and Gravitation. Project deliverables include live performances and a project website with educational materials and a virtual tour of the recorded performance. The live performances will include dance and computer generated visualizations of space phenomena, supplemented with discussion and interactive components to engage audiences both before and after the presentation. The mixed-method evaluation will provide insights into how the medium of dance can be used to engage audiences in STEM fields and increase the understanding of STEM content areas which have had little previous investigation, but may be highly relevant to the engagement of underserved audiences. Performances are planned for select sites in New York, Ohio, Connecticut, Rhode Island, Washington, DC, Pennsylvania and Maryland. It is estimated that the project will directly impact 7,000 individuals, approximately half of whom will be deaf or hard or hearing. Deaf and hard of hearing populations are greatly underserved in science education. This project is an effort to bridge that gap by providing creative models for communicating to the public on contemporary science concepts. Learning outcomes for the target audience include increasing awareness and interest in STEM, acquisition of information and basic concepts from the fields of gravitational physics and astrophysics, and enhancing awareness of relationships among science and the arts. Project activities will be disseminated through the website hosted by the Rochester Institute of Technology, as well as social networking sites including Facebook, Twitter, and Google+. The project will also be promoted through science festivals and media events.
DATE: -
TEAM MEMBERS: Manuela Campanelli Hans-Peter Bischof Jacob Noel-Storr
resource research Public Programs
This paper describes the potential benefits of incorporating art into physics education. Drawing and sculpture provide a way of understanding abstract concepts. The process may also allow educators to “humanize” physics and thus make it more accessible to historically marginalized groups.
DATE:
TEAM MEMBERS: Clea Matson
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource research Public Programs
Project STEAM aims to inspire art-interested girls to enter STEM careers through a series of activities, including summer academies that explore the biology and physics of color, science café-style presentations that feature the overlap between art and science, and the development of “kits” that can be used in informal and formal venues (Girl Scouts, science centers, and K-12 classrooms). Project research explores two questions: 1) How does an art-focused approach (STEAM) to teaching science support engagement in scientific practices such as experimentation, observation, and communication of
DATE:
TEAM MEMBERS: University of Alaska, Fairbanks Laura Conner