Skip to main content

Community Repository Search Results

resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Summer and Extended Camps
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will conduct research designed to deepen our fundamental knowledge about culture, experience, and ecosystems cognition and to develop innovative practices and approaches to support learning about changing ecological systems and environmental decision making. Work on cultural differences in the production of complex systems knowledge is severely lacking. This gap in knowledge may contribute to the continued reproduction of inequities in science education. More broadly findings from this project will have clear implications for theories of cognitive development, especially those pertaining to how knowledge is shaped by culture and experience. Focusing on ecosystems may represent an opportunity to not only increase engagement and achievement in science among non-dominant communities and Native youth specifically, but also advance effective learning for all communities. The primary deliverables for the project are conference presentations and research publications. However, the project will also develop additional resources freely available to researchers, educators, and the general public. These will include summer curricular materials and teaching tools, professional development workshops, practitioner briefs about research findings that can be used in professional development workshops and shared share more broadly, and evaluation reports.

A deeper understanding of cultural influences on conceptions of the natural world can serve to advance the educational needs of children, including children from diverse linguistic and cultural backgrounds. Project research will include two interrelated series of studies designed to expand knowledge about human cognition of complex ecosystems and the affordances of informal STEM learning environments in developing and supporting the critical 21st century skill of ecological systems level reasoning. The first consists of a series of experiments focused on ecological cognition and the role of humans in nature. The second consists of design-based research interventions in informal settings, summer workshops for youth and the communities, focused on ecological systems level thinking and socio-environmental decision making. The project will recruit and engage both child and adult participants from two broad cultural communities, Native Americans and European Americans living in urban and suburban communities, in part because it affords a sharp test of human-nature relations. Sampling from two different urban communities will avoid simple Native-non-Native comparative binaries and to conduct Native-to-Native comparative analysis. Based on results from this, the project will result in: 1) foundational knowledge about human learning and reasoning and ecosystems and environmental decision making, 2) culturally responsive models of learning and practice about complex ecosystems for indoors and outdoors informal learning environments, and 3) insights about research-practice-community partnerships. One important objective of the research is to broaden participation and close opportunity gaps for under-represented groups in STEM fields broadly and more specifically for Indigenous people. Members of Indigenous communities, who provide strong role models for other aspiring scholars, will be involved as postdoctoral fellows, research assistants and graduate fellows.
DATE: -
TEAM MEMBERS: Megan Bang Douglas Medin
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will embed public engagement with science (PES) into the cultures and practices of two Long-Term Ecological Research (LTER) sites: the Hubbard Brook Experimental Forest in New Hampshire and the Harvard Forest in Massachusetts. The goals are 1) to build knowledge about the mutual learning between scientists and adult stakeholders in face-to-face engagement setting and 2) to develop evidence-based practices in the content of place-based ecosystem research. This is a collaborative project of 3 universities (Michigan State University, Harvard, and CUNY) and the two LTERs. Two primary research questions guide this work. First, how willing are participating scientists to take part in PES? What are their attitudes and beliefs about whether engagement can be effective and whether they have the necessary skills? Second, how willing are participating scientists to build relationships with stakeholders using normed tactics? Both qualitative and quantitative methods will be used to collect evidence including semi-structured interviews and surveys. A general set of hypothesis include that there will be positive changes in LTER scientists willingness to participate in PES, attitudes, and efficacy beliefs.
DATE: -
TEAM MEMBERS: John Besley Sarah Garlick Peter Groffman Pamela Templer Kathleen Lambert
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick
resource project Public Programs
The overall goal of this project is to develop and evaluate a community model of informal genomic education that is culturally and educationally appropriate for low-literacy Latino adults born in Mexico and Central America (MCA). The community engagement strategy and materials created will be designed to lead to three learning outcomes: increased interest and engagement with genomics, change in science, technology, engineering, and mathematics (STEM) attitudes and self-identity, and increased understanding about gene function and the human genome. The model created in this project will have the potential to inform other educational efforts, nationally. Semi-structured in-depth interviews will be conducted in Spanish with 60 MCA Latinos to delineate beliefs and knowledge about genetic and genomic concepts and transmission of traits. Interview transcripts will be systematically analyzed to identify explanations about trait transmission, and familiarity with genetic and genomic concepts. Variation in responses across geographic and cultural regions will be noted. Knowledge from this analysis will be used to develop a meaningful community-based learning program about genomics. Lay community educators will facilitate informal learning with MCA adults about genetics and genomics, including gene-environment interactions. This project will use information about environmental exposures (e.g., residential pesticides) as a vehicle to pique participants' interest and illustrate genetic and genomic content. It will compare outcomes for 100 participants who receive practical strategies only to reduce negative and increase positive environmental exposures, respectively, to 100 participants who also receive genetic and genomic content. The strategy and materials will be disseminated through journal articles and presentations at meetings that focus on informal STEM education. The process and content will be rigorously evaluated throughout the project. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Joanne Sandberg
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE: -
TEAM MEMBERS: Corrin Barros Koh Ming Wei Danko Tabrosi Emerson Odango