Skip to main content

Community Repository Search Results

resource project Public Programs
Citizen science is a form of Public Participation in Scientific Research (PPSR) in which the participants are engaged in the scientific process to support research that results in scientifically valid data. Opportunities for participation in real and authentic scientific research have never been larger or broader than they are today. The growing popularity and refinement of PPSR efforts (such as birding and species counting studies orchestrated by the Cornell Lab of Ornithology) have created both an opportunity for science engagement and a need for more research to better implement such projects in order to maximize both benefits to and contributions from the public.

Towards this end, Shirk et al. have posted a design framework for PPSR projects that delineates distinct levels of citizen scientist participation; from the least to the highest level of participation, these categories are contract, contribute, collaborate, co-create, and colleagues. The distinctions among these levels are important to practitioners seeking to design effective citizen science programs as each increase in citizen science participation in the scientific process is hypothesized to have both benefits and obstacles. The literature on citizen science models of PPSR calls for more research on the role that this degree of participation plays in the quality of that participation and related learning outcomes (e.g., Shirk et al., 2012; Bonney et al., 2009). With an unprecedented interest in thoughtfully incorporating citizen science into health-based studies, citizen science practitioners and health researchers first need a better understanding of the role of culture in how different communities approach and perceive participation in health-related studies, the true impact of intended educational efforts from participation, and the role participation in general has on the scientific process and the science outcome.

Project goal to address critical barrier in the field: Establish best practices for use of citizen science in the content area of human health-based research, and better inform the design of future projects in PPSR, both in the Denver Museum of Nature & Science’s Genetics of Taste Lab (Lab), and importantly, in various research and educational settings across the field.

Aims


Understand who currently engages in citizen science projects in order to design strategies to overcome the barriers to participation that occur at each level of the PPSR framework, particularly among audiences underrepresented in STEM.
Significantly advance the current knowledge regarding how citizen scientists engage in, and learn from, and participate in the different levels of the PPSR framework.
Determine the impact that each stage of citizen science participation has on the scientific process.
DATE: -
TEAM MEMBERS: Nichole Garneau Tiffany Nuessle
resource project Media and Technology
Explore the Science of Spring: A Live Media Event is an Innovations in Development project produced by the signature PBS series Nature. The new primetime series Spring LIVE (working title) will break the frame of a traditional documentary, letting viewers themselves explore the dramatic seasonal changes of spring through the immediacy of live television. On-camera hosts, scientists and naturalists in locations across the U.S., and scores of citizen scientists will use observation and scientific inquiry to explore the workings of nature during this season of rebirth. The unfolding stories of seasonal change will illuminate larger scientific insights--into the biodiversity of species in habitats, the interconnectedness of plants and animals in diverse ecosystems, the global phenomenon of species migration, and how spring "green-up" can be affected by environmental change--while inspiring appreciation for species conservation and habitat preservation. Spring LIVE is conceived as an ongoing series, with this inaugural season composed of three one-hour programs broadcast live on three consecutive nights, along with real-time interactions via Facebook. Reaching long-standing Nature viewers (2.5 million per episode), Spring LIVE will seek to turn mature adults and diverse families into citizen science doers, and leverage younger Nature online audiences through social media and community engagement in partnership with citizen science projects.

Spring LIVE will build public knowledge of and engagement in phenology and citizen science. The project will also conduct knowledge-building research on the effectiveness of Facebook as a science learning tool. It will experiment with eliciting audience participation via Facebook within the live shows to generate synchronous, second-screen thought and discussion. An exploratory study by Multimedia Research will look at the impact of this feature, addressing the question: To what extent and how does Facebook interactivity within live science shows impact adult engagement, learning and motivation? Spring LIVE will also engage multiple partners to expand reach and impact and build capacity in their fields. National partners include the National Park Service and Next Avenue; citizen science partners include Celebrate Urban Birds, National Phenology Network, Monarch Blitz, and SciStarter, among others. PBS stations will work with these organizations to involve diverse, intergenerational audiences in observation of nature and seasonal change. Project evaluation, implemented by Knight Williams Research Communications, will focus on the impact of live television on science learning, and the success of the integration of citizen science projects on air, online, and in communities. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Fred Kaufman
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for STEM learning in a variety of settings. Many military veterans who seek to transition to higher education or workforce pathways find it challenging to translate the skills they acquired during service to civilian STEM settings and the modern day workforce. Yet many returning veterans have significant experience with STEM fields, including mapping and geospatial technologies, because of their unique functions and service assignments. Such geospatial skills are useful for location-aware industries, citizen science and public services. At the same time, military and veteran families have been largely overlooked as an important public audience for focused informal STEM learning. Informal learning events called "mapathons" which enlists participants to mapping exercises and create geospatial data on open platforms that address authentic needs in their communities and the broader society at large. When seeking to further their education upon returning from service, veterans' typical options have included some form of formal higher education. Mapathons may be a feasible bridging activity that (a) recognizes veterans' unique, valuable, and in-demand STEM skills and (b) supports lifelong learning.

This pilot research seeks to understand how informal learning experiences such as mapathons are viable pathways for veterans to transition to the civilian workforce. The conceptual approach pays attention to the realities of the life course of military and veteran families, especially building upon theories of change related to transitions to include a spatial component. The foundation of the project's intellectual merit is its explicit inclusion and sensitivity to place, scale, and spatial behavior, building directly from findings of prior NSF-funded projects and the evidence base for informal learning pathways. The research will contribute to knowledge about workforce development by addressing the questions: (1) To what extent do veterans recognize that their extant skills acquired, in military settings, are translatable to civilian STEM settings?; (2) How can informal learning experiences help a diverse veteran population increase awareness of the translatability of geospatial workforce competencies, build confidence in technology skills, and motivate interest to pursue formal studies in STEM fields in general?; and (3) What pathways do which veterans favor when they could pursue formal STEM higher education learning among an array of choices online or at regional sites, and why? The study will engage 320 participants at 8 sites across Texas; employ in-depth surveys and interviews; and use spatial analysis to elicit insights about the research questions.

Military and veteran families include a significant number of people from group typically underrepresented in STEM fields. Supporting more veterans to transition successfully to higher education pathways or careers in STEM is a vital service to the nation. This study on informal to formal pathways for veterans will include an innovative understanding of the importance of place in meaning-making and in the reality of choices they consider during the transitions of their life course.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Patricia Solis Melanie Hart Dennis Patterson
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones