Skip to main content

Community Repository Search Results

resource evaluation Exhibitions
This study collected data from seven planetarium email lists (one per planetarium regional organization in the United States), as well as online survey panel data from residents in each area, to describe and compare those who do and do not visit planetariums.
DATE:
TEAM MEMBERS: Karen Peterman Keshia Martin Jane Robertson Evia Sally Brummel Holly L. Menninger
resource research Public Programs
In partnership with the Digital NEST, students engage in near to peer learning with a technical tool for the benefit of a nonprofit that tackles issues the youth are passionate about. Youth build first from an 'internal’ Impactathon, to planning and developing an additional Impactathon for a local partner and then traveling to another partner elsewhere in the state. Participants range from 14 to 24 from UC Santa Cruz students to middle schoolers from Watsonville and Salinas. This poster was presented at the 2019 AISL Principal Investigators Meeting.
DATE:
TEAM MEMBERS: Amber Holguin
resource project Professional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.

The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.

This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
DATE: -
resource project Public Programs
This pilot study will examine the effectiveness of an innovative applied social change, community and technology based program on marginalized youths' access, interest, efficacy and motivation to learn and engage in digital technology applications. Using stratified near-peer and peer-to-peer mentoring approaches, the pilot builds on extant literature that indicates that peer-supported hands-on mentoring and experiences can alleviate some barriers to youth engagement in digital technologies, particularly among underrepresented groups. In this project, undergraduate students will mentor and work collaboratively with high school youth primarily of Hispanic descent and community-based organizations to develop creative technology-based solutions to address social issues and challenges within their local communities, culminating in events called Impactathons. These community-hosted local and state-wide events set this pilot project apart from similar work in the field. The Impactathons not only provide a space for intellectual discourse and problem-solving among the undergraduate-youth-community partners but the Impactathons will also codify expertise from scientists, social scientists, technologists, community leaders, and other stakeholders to develop technology-based solutions with real world application. If successful, a distal outcome will be increased youth interest in digital technologies and related fields. In the short term, favorable findings will provide preliminary evidence of success and lay the foundation for a more extensive study in the future.

This pilot project is a collaboration between the Everett Program, a student-led program for Technology and Social Change at the University of California Santa Cruz - a Hispanic Serving Institution - and the Digital NEST, a non-profit, high-tech youth career development and collaboration space for young people ages 14-24. Through this partnership and other recruitment efforts, an estimated 70-90 individuals will participate in the Impactathon pilot program over two years. Nearly two-thirds of the participants are expected to be undergraduate students. They will receive extensive training in near-peer and peer-to-peer mentoring and serve as mentors for and co-innovation developers with the high school youth participants. The undergraduates and youth will partner with local community organizations to identify a local social challenge that can be addressed through a technology-based solution. The emergent challenges will vary and could span the spectrum of STEM and applied social science topics of interest. Working in informal contexts (i.e., afterschool. weekend), the undergraduate-youth-community partner teams will work collaboratively to develop practical technology-based solutions to real world challenges. The teams will convene three times per year, locally and statewide, at student and community led Impactathons to share their work and glean insights from other teams to refine their innovations. In parallel, the research team will examine the effectiveness of the Impactathon model in increasing the undergraduate and youths' interest, motivation, excitement, engagement and learning of digital technologies. In addition to the research, the formative and summative evaluations should provide valuable insights on the effectiveness of the model and its potential for expansion and replication.

The project is co-funded by the Advancing Informal STEM Learning (AISL) Program and STEM +C. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. STEM + C focuses on research and development of interdisciplinary and transdisciplinary approaches to the integration of computing within STEM teaching and learning for preK-12 students in both formal and informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Chris Benner
resource research Museum and Science Center Programs
The National Autonomous University of Mexico (UNAM) is one of the world's single largest employers of science communicators, with over 350,000 students and 40,000 staff. Its science communication activities include five museums (Universum, Museo de la Luz, the Geology Museum, Museo de la Medicina Mexicana and Musem of Geophysics), botanical gardens, as well as a wide range of cultural and outreach activities. It has several programmes for training professional science communicators. The science communication staff are spread across the campuses in Mexico City and four other cities, including
DATE:
TEAM MEMBERS: Ana Claudia Nepote Elaine Reynoso-Haynes
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource evaluation Exhibitions
Genetics was developed by The Tech staff in collaboration with Stanford University and was funded by the National Institutes of Health Science Education Partnership Award (SEPA) program. The evaluation documents the impact and effectiveness of the exhibition using timing and tracking observations and exit interviews. It also examines the partnership between The Tech and Stanford University through interviews with graduate students, who conduct programs in the exhibition, and their supervisor (results are not included in this summary).
DATE:
TEAM MEMBERS: Randi Korn The Tech Museum of Innovation