Skip to main content

Community Repository Search Results

resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Jay Gillen Maisha Moses Naama Lewis Alice Cook
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Informal/Formal Connections
HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST), the Advancing Informal STEM Learning (AISL), and the Discovery Research PreK-12 (DRK-12) programs. These programs which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' and general public knowledge and interest in science, technology, engineering, and mathematics (STEM).
DATE: -
TEAM MEMBERS: Cynthia Trawick John Haynes Triscia Hendrickson Terry Mills
resource project Public Programs
Informal STEM education spaces like museums can intentionally serve surrounding communities and support sustainable and accessible engagement. Building from this base, the project takes a stance that the intersection of the museum, home/family life and the youth’s internal practices and disciplinary sense of self are rooted in history and culture. Thus, this CAREER work builds on the following principles: Black families and youth have rightful presence in STEM and in STEM learning environments; Black families are valuable learning partners; and Black youths need counterspaces to explore STEM as one mechanism for creating future disciplinary agency. In partnership with the Henry Ford Museum and the Detroit-Area Pre-College Engineering Program, the project seeks to (a) expand the field's understanding of how Black youth engineer and innovate; (b) investigate the influence of a culturally relevant curriculum on their engineering practices and identity, knowledge, and confidence; and (c) describe the ways Black families and museums support youth in engineering learning experiences. The work will center on the 20-hour “Innovate” curriculum which was designed by the museum to bridge design, innovation, and creation practices with the artifacts of innovators throughout time. The project comprises six weekend “Innovate” sessions and an at-home innovation experience plus participation in an annual Invention Convention. By focusing on these aims, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

The main research questions of this multiphase CAREER award are: (1) What practices do Black youths and families engage in as they address engineering, design, and innovation challenges? (2) In what ways does a culturally relevant museum-based innovation program influence the design and innovation practices and assessment performance of Black youths and families as they engage in engineering, design, and innovation across learning settings? (3) How does teaching innovation, design, and engineering through historical re-telling and reconstruction influence a youth’s perception of their own identities, abilities, and practices? and (4) How do Black families engage with informal STEM learning settings and what resources best support their engineering, design, and innovation exploration? Youth in sixth grade are the focus of the research. The work is guided by ecological systems, sociocultural learning, culturally relevant pedagogy, and community cultural wealth theories. During phase one, the focus will be to refine the curriculum and logistics of the study implementation. The investigator will enhance the curriculum to include narratives of Black innovators and engineers. Fifteen families will be recruited to participate in the program enhancement pilot and initial research cycle for phase two. In phase three another cohort of families will be recruited to participate. Survey research, narrative inquiry and digital ethnography will comprise the approaches to explore the research questions. The evaluation has a two-pronged focus: to assess (1) how well the enhanced Innovate curriculum and museum/home learning experience supports Black families’ participation and (2) how well the separate phases of the study connect and operate together to meet the research aims. The study’s findings can help families and informal practitioners leverage evidence-based approaches to support Black youth in making connections between history and out-of-school contexts to model and develop their innovative engineering practices. Additionally, this work has implications for Black undergraduate students who will develop skills through their mentorship and researcher roles, studying cultural practices and learning experiences. The research study and findings can inform the design of future museum/home learning programs and research opportunities for Black learners in informal learning spaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: DeLean Tolbert Smith
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource project Informal/Formal Connections
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.

The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.

This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.

Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
DATE: -
TEAM MEMBERS: Maria Ong Apriel Hodari
resource research Informal/Formal Connections
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
DATE:
TEAM MEMBERS: Maria Ong Janet Smith Lily Ko
resource research Professional Development, Conferences, and Networks
In our efforts to sustain U.S. productivity and economic strength, underrepresented minorities (URM) (for the purpose of this paper defined as persons of African American, Hispanic American, and Native American racial/ethnic descent), provide an untapped reservoir of talent that could be used to fill technical jobs. Over the past 25 years, educational diversity programs have encouraged and supported URM pursuing STEM degrees. Yet, their representation in STEM still lags far behind that of White, non-Hispanic men. To understand the reasons why this is occurring, the American Association for
DATE:
TEAM MEMBERS: Yolanda S. George Virginia Van Horne Shirley M. Malcom
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt