Skip to main content

Community Repository Search Results

resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource research Media and Technology
What are students' mental models of the environment? In what ways, if any, do students' mental models vary by grade level or community setting? These two questions guided the research reported in this article. The Environments Task was administered to students from 25 different teacher-classrooms. The student responses were first inductively analyzed in order to identify students' mental models of the environment. The second phase of analysis involved the statistical testing of the identified mental models. From this analysis four mental models emerged: Model 1, the environment as a place
DATE:
TEAM MEMBERS: Daniel Shepardson Bryan Wee Michelle Priddy Jon Harbor
resource research Public Programs
This article describes Boyz 2 Men, a product of the Educational Alliance's Project Try. This program targets inner city men and promotes positive expressions of self and responsibility in the treatment of others. Addressing pervasive sexist and homophobic expressions and attitudes can help free young men for fuller self-expression, though the process is never easy.
DATE:
TEAM MEMBERS: Jon Gilgoff
resource research Public Programs
The article assesses professional development in the field of science through curricular and instructive methods in the museum. The National Science Education Standards, along with independent researchers, confirm and stress the importance of quality professional development for elementary science educators which can be provided by museum services and models. The study involved participants from two different elementary schools within the same urban district serving a Latino student body, which were recognized as bottom tiers in the academic performance index of California's Department of
DATE:
TEAM MEMBERS: Leah Melber
resource evaluation Public Programs
In 2001, The Franklin Institute Science Museum (TFI) received funding from the National Science Foundation to develop and implement Parent Partners in School Science (PPSS). A year project, PPSS was designed to demonstrate how a science museum can facilitate K-4 children's science learning in and out of school, working with teachers and parents from 3 urban elementary schools in Philadelphia. More specifically, three goals have informed the implementation of PPSS: 1) Promote science teaching at the elementary level; 2) Cultivate home-school collaboration in support of students' science
DATE:
TEAM MEMBERS: Jessica Luke Franklin Institute Science Museum Martha Washington Academics Plus Olney Elementary School R.B. Pollock Elementary School Susan Foutz
resource project Public Programs
The goal of this Planning Grant is to create and pilot embedded mathematics activities in an effort to increase numeracy skills of adults in community advocacy groups. The project is designed to explore the manner in which adults address mathematics issues related to community problems, design interventions that will assist with the understanding and interpretation of data, the use of mathematics and experiment with focused activities to explicate mathematical ideas. Three proof of concept intervention activities will be pilot tested with members of urban and rural community action groups in Boston, Massachusetts, and in a rural Appalachian town in Tennessee. The project partners include the Center for Literacy Studies, Boston Asthma Coalition, Haitian American Public Health Initiative and the Blue Ridge Environmental Defense Fund. Project deliverables include a needs assessment and the design and evaluation of mathematics interventions to ascertain the impact on adults' use and confidence. Strategic impact will be realized by exploring community groups as an informal education setting for introducing contextualized STEM content.
DATE: -
TEAM MEMBERS: Mary Jane Schmitt Mary Beth Bingman
resource project Public Programs
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
DATE: -
TEAM MEMBERS: Debra Yourick Marti Jett
resource project Public Programs
The Science Museum of Minnesota (SMM)--in collaboration with scientists at the University of Minnesota's Center for Infectious Disease Research and Policy and Academic Health Center; the Minnesota Department of Health, and the Minnesota Antibiotic Resistance Collaborative--requests a Phase 1/11five-year SEPA grant of $1,250,000 to develop a traveling museum exhibition and web site that highlight the fascinating science behind the outbreaks of emerging and re-emerging infectious diseases that are changing and shaping our way of life in the 21st century. Topics to be covered will include the emergence of new illnesses like SARS and Avian Influenza and the re-emergence of drug-resistant infections that were once curable but now can be fatal. An Infectious Disease Advisory Panel and Content Experts representing the collaborating institutions listed above and others will guide museum staff in the development of these exhibits and programs. EMERGING INFECTIOUS DISEASES will be a 1,500 square-foot special exhibition to be installed in SMM's Human Body Gallery in spring 2007. After an 18-month presentation, it will begin a tour to five medium size science centers over two years. In addition to the exhibition and its complementary web site, special programming will be targeted to reach specific audiences, including: K-12 school groups visiting the museum (a user guide with on-line pre- and post-visit activities aligned with state and National Science Education Standards); K-12 classroom teachers (Curriculum Enhancement Institutes); and outreach programs serving after-school programs for children in under-served inner-city neighborhoods. A focus on areas of ongoing research will be used to highlight how far we have come in understanding the complex world of infectious diseases and how far we must go in treatment or elimination of present day health threats.
DATE: -
TEAM MEMBERS: Laurie Fink Larry Wechsler
resource research Media and Technology
Based on work in media studies, new literacy studies, applied linguistics, the arts and empirical research on the experiences of urban youths’ informal media arts practices we articulate a new vision for media education in the digital age that encompasses new genres, convergence, media mixes, and participation. We first outline the history of how students’ creative production has been used to meet the goals of media educators and highlight new trends in media education that are instructive for creative production. Our goal is to introduce and situate the new ways in which youth are
DATE:
TEAM MEMBERS: Kylie Peppler Yasmin Kafai