Skip to main content

Community Repository Search Results

resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Media and Technology
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.

The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Mark Warschauer Silvia Lovato Andres Bustamante Abby Jenkins Ying Xu
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.

This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
DATE: -
TEAM MEMBERS: Lui Hokoana Hokulani Holt-Padilla Jaymee Nanasi Davis
resource project Public Programs
Creating science education that can contribute to cultivating just, culturally thriving, and sustainable worlds is an important issue of our time. Indigenous peoples have persistently been under-represented in science reproducing inequalities in a myriad of ways from educational attainment, participation in and contributing to innovations in foundational knowledge, to effective policy making that upholds and respects Indigenous sovereignty. The development of models of science education that attend to intersections of knowledge and development, socio-scientific decision-making and civic leadership, and the complexities and contradictions of these realities, is imperative. This five-year Innovations in Development project broadens participation and strengthens infrastructure and capacity for Indigenous learners to meet, adapt to, and lead change in relation to the socio-ecological challenges of the 21st century. The project engages multi-sited community-based design studies to develop and research the impacts of Indigenous informal field-based science education with three Indigenous leadership communities from the Pacific Northwest and the Great Lakes. This project will have broader impacts through model development, building infrastructure to transform the capacity of informal field-based science education, and will produce cutting edge foundational knowledge about pressing 21st century issues with a particular focus on Indigenous communities. The project increases Indigenous participation in research through 1) engagement of Indigenous community members as research assistants, 2) training of Indigenous graduate fellows, and post-doctoral fellows, and 3) supporting the careers of more junior Indigenous scholars.

This research seeks to identify key design features of an Indigenous field (land/water) based model of science education and to understand how learners’ and educators’ reasoning, deliberation, decision-making, and leadership about complex socio-ecological systems and community change evolve in such learning environments. The project also examines key aspects of co-design and partnership with Tribal communities and how these methods of co-production of new science enable new capacities for systems transformation. This multi-layered project is organized through 3 panels of studies including: Panel 1) community-based design experiments to develop and refine a model of Indigenous informal science education; Panel 2) co-design and implementation of professional learning programs for Indigenous informal science education; and Panel 3) foundational studies in cognition and learning with respect to socio-ecological systems thinking and the impact on learning and instructional practices. Of particular importance in this research is the rigorous development and articulation of effective pedagogical practices and orientations. More broadly, findings will have clear implications for theories of cognitive development, deliberation and environmental decision making and especially those pertaining to how knowledge is shaped by culture and experience.

This project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Filiberto Barajas-Lopez Anna Lees Megan Bang Anna Lees Filiberto Barajas-Lopez
resource project Public Programs
The U.S. urgently needs the perspective and knowledge of females who are Latinx and African American in STEM fields. Providing early STEM interest pathways for these populations that are historically underrepresented in STEM fields is critical to creating gender equity in the STEM workforce. There are profound inequities in STEM fields for women of color that impact their interest and persistence in these fields. This Research in Service to Practice project will build important knowledge about early pathways for reducing these inequities by developing early interest in STEM. Gender stereotypes around who can do STEM are one of the sociocultural barriers that contributes to girls’ loss of interest in STEM. These stereotypes emerge early and steer young women away from STEM studies and pursuits. Exposing girls to role models is an effective strategy for challenging stereotypes of who belongs and succeeds in STEM. This project will explore how an afterschool program that combines narrative and storytelling approaches, STEM role models, and family supports, sparks elementary-age girls’ interest in STEM and fosters their STEM identity. The project targets K-5 students and families from underrepresented groups (e.g., Latinx and African American) living in poverty. The project will evaluate an inquiry-based, afterschool program that serves both elementary school girls and boys and explores if adding storytelling components to the out-of-school time (OST) learning will better support girls’ interest in STEM. The storytelling features include: 1) shared reading of books featuring females in STEM; 2) students’ own narratives that reminisce about their STEM experiences; and 3) video interviews of female parents and community members with STEM careers. A secondary aim of this project is to build capacity of schools and afterschool providers to deliver and sustain afterschool STEM enrichment experiences. Museum-based informal STEM experts will co-teach with afterschool providers to deliver the Children’s Museum Houston (CMH) curriculum called Afterschool Science, Technology, Engineering, Arts and Math (A’STEAM). Although A’STEAM has been implemented in over 100 sites and shows promise, to scale-up this and other promising afterschool programs, the team will evaluate how professional development resources and the co-facilitation approach can build afterschool educators' capacity to deliver the most promising approaches.

Researchers at the Children’s Learning Institute (CLI) at UTHealth will partner with Museum-based informal STEM educators at CMH, YES Prep, a high performing charter school serving >95% of underrepresented groups, and other afterschool providers serving mostly underrepresented groups experiencing poverty. Storytelling components that highlight females in STEM will be added to an existing afterschool program (A'STEAM Basic). This derivative program is called A’STEAM Stories. Both instantiations of the afterschool programs (Basic and Stories) include an afterschool educator component (ongoing professional development and coaching), a family component (e.g., home extension activities, in-person, and virtual family learning events), and two age-based groups (K-G2 and G3-G5). Further, the A’STEAM Stories professional development for educators includes training that challenges STEM gender stereotypes and explains how to make science interesting to girls. The 4-year project has four phases. In Phase 1, researchers, CMH, and afterschool educators will adapt the curriculum for scalability and the planned storytelling variation. During Phase 2, the research team will conduct an experimental study to evaluate program impacts on increasing STEM interest and identity and reducing STEM gender stereotypes. To this end, the project’s team will recruit 36 sites and 1200 children across Kindergarten through Grade 5. This experimental phase is designed to produce causal evidence and meet the highest standards for rigorous research. The researchers will randomly assign sites to one of three groups: control, A’STEAM Basic, or A’STEAM Stories. During Phase 3, researchers will follow-up with participating sites to understand if the inclusion of afterschool educators as co-facilitators of the program allowed for sustainability after Museum informal science educator support is withdrawn. In Phase 4, the team will disseminate the afterschool curriculum and conduct two training-of-trainers for local and national afterschool educators. This study uses quantitative and qualitative approaches. Data sources include educator and family surveys, focus groups, and interviews as well as observations of afterschool program instructional quality and analysis of parent-child discourse during a STEM task. Constructs assessed with children include STEM interest, STEM identity, and STEM gender stereotype endorsement as well as standardized measures of vocabulary, science, and math. Findings will increase understanding of how to optimize OST STEM experiences for elementary-age girls and how to strengthen STEM interest for all participants. Further, this project will advance our knowledge of the extent to which scaffolded, co-teaching approaches build capacity of afterschool providers to sustain inquiry-based STEM programs.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Tricia Zucker Gloria Yeomans-Maldonado Cheryl McCallum Lance Menster
resource project Professional Development, Conferences, and Networks
Among scientists, science communication is an increasingly important area of practice, scholarship, and research, especially with early career scientists. The growing interest in combating widespread disinformation and inaccurate public perception of science has increased demand for training in science communication; however, there is a significant gap in both research and training for scientists from diverse racial and ethnic cultural backgrounds. The project will address this knowledge and research gap by applying intercultural communication theory to the design, development, and testing of a new curriculum that will provide evidence-based methods to make science communication trainings inclusive and intersectional. The curriculum will be designed and evaluated to build capacity among science communication trainers and practitioners. Sixty pre-tenure environmental science faculty of diverse racial and ethnic backgrounds will be trained in strategic science communication skills using cultural perspectives and academic goals in science communication. The project will gather research data in collaboration with the national SciComm Trainers Network. In addition to advancing science communication research, training, and practice, the project will implement a novel, peer-reviewed podcast for broader impact. The project Fellows will be prepared to engage in a wide range of science communication activities throughout their careers and lead related efforts at their home institutions. Following a final workshop to develop culturally responsive guidance for science communication trainers, the project team will share findings to the field to inform future practice and societal impacts from advancing culturally relevant science communication in training programs. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.

The project will address two significant gaps in science communication and intercultural communication research. First, despite the recognition that more research about race and ethnicity is needed in science communication, few studies have been conducted. Second, while findings on intercultural communication research are consistent across fields, such as health communication and business communication, the research has yet to examine how well-established theories in this area of study apply to the unique norms and processes of science. Investigators will test a novel theoretical framework grounded in two intercultural communication theories: identity negotiation theory and communication accommodation theory. The project will test the extent to which the professional norms and processes of STEM and academia relate to cultural norms and communication styles of underrepresented racial and ethnic minority scientists, and how these factors influence their science communication efforts. The project will use a mixed methods approach including in-depth interviews and surveys. The results of the study will be used to develop and adapt culturally tailored science communication training for 60 pre-tenure environmental science faculty from underrepresented groups. The results of the project will provide evidence to make science communication training and practice more inclusive and effective. The collaboration with the national SciComm Trainers Network will ensure broad dissemination and professional application of project findings. The project will increase representation of racial and ethnic minority scientists as science communicators, including in environmental news coverage; provide a new peer-reviewed podcast series for public audiences that will introduce listeners to environmental research through a culturally responsive lens; provide tested methods for designing inclusive and effective science communication training curricula; and will inform faculty efforts to incorporate science communication activities as part of career advancement.
DATE: -
TEAM MEMBERS: Bruno Takahashi Sunshine Menezes
resource project Professional Development, Conferences, and Networks
Millions of Latinx youth, aged 14 to 18, work formal or informal jobs to provide income for themselves or their families. In the context of these workplaces, Latinx youth demonstrate numerous skills that are essential to industrial engineering, such as minimizing workplace injuries or optimizing processes to maximize efficiency. However, their workplace ingenuity and skills are often underrecognized by educational systems. To counter this lack of recognition, the purpose of this project is to iteratively develop and research an out-of-school engineering program for working Latinx youth. This program is designed to recognize and build from youths’ workplace experiences by connecting them with industrial engineering concepts and practices, such as those used to promote worker safety. This program is also designed for youth to articulate transformational visions of industrial engineering, which expand current goals, values, and methods commonly embraced within this discipline. This year-long program will be facilitated by educators of existing out-of-school programs (e.g., Mathematics, Engineering, and Science Achievement), in partnership with undergraduate mentors from the Society for Professional Hispanic Engineers and other local organizations that serve Latinx youth (e.g., Latinos in Action). Approximately 220 youth are expected to participate in the programming. Researchers will explore whether and how youth participants develop identities in engineering, as well as how the educators and mentors understand and enact assets-based, out-of-school engineering education grounded in youths’ experiences. Researchers will also identify the individual, institutional, and systemic factors that support or inhibit sustained implementation of the program over time in different sites and contexts. This project will result in a set of empirically tested, bilingual program materials that will be disseminated widely to professional organizations dedicated to out-of-school programming and to serving Latinx youth.

This project will result in a localizable, transferable, and sustainable model for an out-of-school time program that recognizes and amplifies Latinx youths’ workplace funds of knowledge and leverages them toward youth-driven visions and applications of engineering. This program, which will connect with other people and sites in youths’ learning ecosystems, is grounded in principles of translanguaging, transformational mentorship, and educational dignity and recognition. In partnership with youth participants, researchers will use a social design experiment to explore the following research questions: What are the engineering identity trajectories of working high school youth, and how do specific moments of identity negotiation and recognition relate to broader patterns across program sessions and identity trajectories for individual participants over time? To answer these questions, a pre-, mid- and post-program Engineering Identity Scale; recordings of program implementations; interviews; and youth artifacts will be analyzed using various methods such as critical multimodal discourse analysis. After implementations of the program across multiple sites, researchers will use design-based implementation research to answer the following questions: How do educators and mentors understand and enact assets-based pedagogies designed to foster recognition across sites? What institutional and systemic features (designed or naturalistic) support or inhibit productive adaptations and implementations of the program? These questions will be answered using constant comparative analyses of data sources such as interviews with the program educators and mentors, observations of program implementations, observations of professional development sessions, and public documents. Culturally responsive, educative evaluation will be used to iteratively improve the program. The resulting research and program materials will be disseminated widely through professional organizations dedicated to Latinx youth, engineering education, and out-of-school learning.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Amy Wilson-Lopez Alfonso Torres-Rua Marisela Martinez-Cola Colby Tofel-Grehl Alfonso Torres-Rua
resource project Public Programs
Informal STEM education spaces like museums can intentionally serve surrounding communities and support sustainable and accessible engagement. Building from this base, the project takes a stance that the intersection of the museum, home/family life and the youth’s internal practices and disciplinary sense of self are rooted in history and culture. Thus, this CAREER work builds on the following principles: Black families and youth have rightful presence in STEM and in STEM learning environments; Black families are valuable learning partners; and Black youths need counterspaces to explore STEM as one mechanism for creating future disciplinary agency. In partnership with the Henry Ford Museum and the Detroit-Area Pre-College Engineering Program, the project seeks to (a) expand the field's understanding of how Black youth engineer and innovate; (b) investigate the influence of a culturally relevant curriculum on their engineering practices and identity, knowledge, and confidence; and (c) describe the ways Black families and museums support youth in engineering learning experiences. The work will center on the 20-hour “Innovate” curriculum which was designed by the museum to bridge design, innovation, and creation practices with the artifacts of innovators throughout time. The project comprises six weekend “Innovate” sessions and an at-home innovation experience plus participation in an annual Invention Convention. By focusing on these aims, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

The main research questions of this multiphase CAREER award are: (1) What practices do Black youths and families engage in as they address engineering, design, and innovation challenges? (2) In what ways does a culturally relevant museum-based innovation program influence the design and innovation practices and assessment performance of Black youths and families as they engage in engineering, design, and innovation across learning settings? (3) How does teaching innovation, design, and engineering through historical re-telling and reconstruction influence a youth’s perception of their own identities, abilities, and practices? and (4) How do Black families engage with informal STEM learning settings and what resources best support their engineering, design, and innovation exploration? Youth in sixth grade are the focus of the research. The work is guided by ecological systems, sociocultural learning, culturally relevant pedagogy, and community cultural wealth theories. During phase one, the focus will be to refine the curriculum and logistics of the study implementation. The investigator will enhance the curriculum to include narratives of Black innovators and engineers. Fifteen families will be recruited to participate in the program enhancement pilot and initial research cycle for phase two. In phase three another cohort of families will be recruited to participate. Survey research, narrative inquiry and digital ethnography will comprise the approaches to explore the research questions. The evaluation has a two-pronged focus: to assess (1) how well the enhanced Innovate curriculum and museum/home learning experience supports Black families’ participation and (2) how well the separate phases of the study connect and operate together to meet the research aims. The study’s findings can help families and informal practitioners leverage evidence-based approaches to support Black youth in making connections between history and out-of-school contexts to model and develop their innovative engineering practices. Additionally, this work has implications for Black undergraduate students who will develop skills through their mentorship and researcher roles, studying cultural practices and learning experiences. The research study and findings can inform the design of future museum/home learning programs and research opportunities for Black learners in informal learning spaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: DeLean Tolbert Smith
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource project Exhibitions
Recent studies have advocated for a shift toward educational practices that involve learners in actively contributing to science, technology, engineering, and mathematics (STEM) as a shared and public endeavor, rather than limiting their involvement to the construction of previously established knowledge. Prioritizing learners’ agency in deciding what is worth knowing and how learning takes place may create more equitable and inclusive learning experiences by centering the knowledge, cultural practices, and social interactions that motivate learning for people across ages, genders, and backgrounds. In informal learning environments, families’ social interactions are critical avenues for STEM learning, and science centers and museums have developed strategies for prompting families’ sustained engagement and conversation at STEM exhibits. However, exhibits often guide visitors’ exploration toward predetermined insights, constraining the ways that families can interact with STEM content, and neglecting opportunities to tap into their prior knowledge. Practices in the maker movement that emphasize skill-building and creative expression, and participatory practices in museums that invite visitors to contribute to exhibits in consequential ways both have the potential to reframe STEM learning as an ongoing, social process that welcomes diverse perspectives. Yet little is known about how these practices can be scaled, and how families themselves respond to these efforts, particularly for the diverse family audiences that science centers and museums aim to serve. Further, although gender and ethnicity both affect learning in informal settings, studies often separate participants along a single dimension, obscuring important nuances in families’ experiences. By addressing these outstanding questions, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

Research will address (1) how families perceive and act on their collective epistemic agency while exploring STEM exhibits (i.e., how they work together to negotiate and pursue their own learning goals); (2) whether and how families’ expressions of agency are influenced by gender and ethnicity; and (3) what exhibit design features support expressions of agency for the broadest possible audience. Research studies will use interviews and observational case studies at a range of exhibits with distinct affordances to examine families’ epistemic agency as a shared, social practice. Cultural historical activity theory and intersectional approaches will guide qualitative analyses of families’ activities as systems that are mediated by the physical environment and social setting. Education activities will involve an ongoing collaboration between researchers, exhibit designers, educators, and facilitators (high-school and college-level floor staff), using a Change Laboratory model. The group will use emerging findings from the research to create a reflection tool to guide the development of more inclusive learning experiences at STEM exhibits, and a set of design principles for supporting families’ expressions of agency. A longitudinal ethnographic study will document the development of inclusive exhibit design practices throughout the project as well as how the Change Lab participants develop their sociocultural perspectives on learning and exhibit design over time. Analyzing these shifts in practice within the Change Lab will provide a deeper understanding of what works and what is difficult or does not occur when working toward infrastructure change in museums. By considering how multiple aspects of families’ identities shape their learning experiences, this work will generate evidence-based recommendations to help science centers and museums develop more inclusive practices that foster a sense of ownership over the learning process for the broadest possible audience of families.
DATE: -
TEAM MEMBERS: Susan Letourneau