Skip to main content

Community Repository Search Results

resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Media and Technology
Three-dimensional digital models are increasingly prevalent in preserving tangible and intangible aspects of Indigenous material heritage. Yet, there are no comprehensive, clearly laid-out best practices that can guide researchers, Indigenous communities, and museum personnel in designing ethically sound and socially engaged 3D heritage preservation projects. The use of 3D technologies for heritage preservation and providing public access to digital 3D collections is well-established in the European context. While there have been several robust efforts on digitizing European national heritage, in the U.S. context, the focus often involves work with Indigenous heritage, instantly placing 3D projects into a post-colonial research paradigm with a complex set of ethical ramifications. This research examines emerging thoughts from the European context and connects them with best practices in digital Indigenous data management to identify practices that contribute to cultures of academic integrity that are inclusive of all stakeholder voices. This work fosters ethical cultures of STEM through the development of a comprehensive Responsible Conduct of Research guiding document that can be adapted to address culture-specific Indigenous perspectives as well as project-specific challenges in future 3D heritage preservation endeavors.

Project goals are accomplished through workshops and virtual collaborations that bring together researchers, Indigenous community members, and heritage preservation professionals with previous experience in the responsible management, protection, and sharing of Indigenous digital data and the use of 3D technology for heritage preservation. The collaboratively produced guidelines outline ethical considerations that can be used in developing: 1) partnerships with origin/descendant communities, 2) institution- and collection-specific museum policies on using 3D technology, 3) Tribal policies for culturally appropriate use of 3D technologies, and 4) training material and curriculum that integrates with other research compliance regulations pertaining to heritage preservation. The project explores the questions that have emerged through previous experiences using 3D technologies to preserve Indigenous ancestral heritage. These questions include the factors contributing to developing ethically sound 3D heritage preservation projects; the practices useful in 3D projects to foster a culture of integrity that equally engages academic and Indigenous perspectives; consideration for what constitutes Responsible Conduct of Research in using 3D technologies to preserve Indigenous cultural heritage; and addressing practice-based questions that contribute to understanding ethical challenges in digitally preserving and presenting Indigenous heritage. The project situates 3D modeling and heritage representation as part of the larger discourse on decolonizing core methodologies in museum management and anthropological collection practices. Results from this work can be adapted to training future researchers and digital heritage management professionals and creating meaningful partnerships in heritage documentation. This research cultivates cultures of academic integrity by informing heritage management policy on the critical importance of heritage ethics for the creation and management of 3D digitization projects involving Indigenous collections. This award is funded by the Directorate of Geosciences and the Directorate of Education and Human Resources.
DATE: -
TEAM MEMBERS: Medea Csoba-DeHass Lori Collins
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Media and Technology
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource research Media and Technology
How a discipline's history is written shapes its identity. Accordingly, science communicators opposed to cultural exclusion may seek cross-cultural conceptualizations of science communication's past, beyond familiar narratives centred on the recent West. Here I make a case for thinking about science communication history in these broader geotemporal terms. I discuss works by historians and knowledge keepers from the Indigenous Australian Yorta Yorta Nation who describe a geological event their ancestors witnessed 30,000 ybp and communicated about over generations to the present. This is likely
DATE:
TEAM MEMBERS: Lindy Orthia
resource research Media and Technology
To engage parents and young children in exploring science together, media producers from WGBH (Boston’s public media station) and researchers from Education Development Center (EDC) collaborated with two home-visiting organizations—Home Instruction for Parents of Preschool Youngsters (HIPPY USA) and AVANCE—to design and test PEEP Family Science, an app-based intervention with science-focused digital media resources and associated supports for diverse, low-income families. Both organizations target families whose children do not attend preschool. These home visiting organizations play a unique
DATE:
TEAM MEMBERS: Jennifer Stiles Megan Silander
resource project Informal/Formal Connections
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.

Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Aaron Wilson Sergey Grigorian Xiaohui Wang Mayra Ortiz
resource project Media and Technology
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tino Nyawelo John Matthews Jordan Gerton Sarah Braden
resource project Media and Technology
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.

The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.

This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Isbister
resource project Media and Technology
The University of South Carolina will develop and research an educational program in the Southeastern United States designed to recognize and foreground the scientific contributions of the descendants of West Africans and West Indians. Though these contributions have been vital to many scientific enterprises, including land stewardship and aquaponics, they have remained largely underappreciated in educational programs. To address this issue, this project will develop an informal science education program for youth from Gullah/Geechee communities whose ancestors were formerly enslaved West African and West Indian peoples. Across centuries, Gullah/Geechee people have developed historical and contemporary scientific, engineering, and technological practices that enabled the mastery of fishing and the cultivation of numerous crops across barrier islands and coastal cities from North Carolina to Florida. Guided by Gullah/Geechee scholars and community members, pre-service and in-service teachers will co-design culturally sustaining summer programs, which provide Gullah/Geechee youth with opportunities to engage in culturally-embedded scientific and engineering practices as they learn about numerous STEM (science, technology, engineering, and mathematics) career pathways related to these practices. The University of South Carolina will host these summer programs in partnership with the historic Penn Center, an African American historical and cultural institution, and in partnership with the Belle W. Baruch Institute for Marine and Coastal Sciences, a research organization dedicated to improving the management of marine and coastal resources. Researchers will study how the in-service and pre-service teachers enact pedagogies that sustain Gullah/Geechee cultural practices. They will also study how the Gullah/Geechee youth share their understandings of culturally-embedded scientific content through creating iMovies and through giving community presentations hosted by the Penn Center, Baruch Institute, and other community partners. This project will advance knowledge on broadening participation in STEM (science, technology, engineering, and mathematics) career pathways in informal settings through culturally sustaining pedagogies. This project will also advance partnerships through illuminating how different institutions and stakeholders?such as community leaders, cultural centers, university educator programs, and scientific research organizations can work together to support culturally-embedded learning across informal settings.

The University of South Carolina will conduct a mixed-method study grounded in principles of design-based research and community-based participatory research. Pre-service and in-service teachers from underrepresented groups will participate in an immersive two-year professional development experience during which they co-design and teach culturally sustaining summer programs with Gullah/Geechee scholars and leaders. In these programs, fifth- and sixth-grade Gullah/Geechee youth will engage in project-based learning by applying historical and contemporary scientific practices grounded in Gullah/Geechee cultures. Guided by cultural mentors, youth will engage in STEM practices similar to those of STEM professionals in the community. Researchers will study how the educators understand and apply culturally sustaining pedagogies by using constant comparative analytic methods to analyze transcripts from observations and interviews, as well as the educators' work materials (e.g., lesson plans). They will also study how the youth convey their understandings of culturally-embedded scientific content and practices by using constant comparative and multimodal analysis to analyze transcripts from interviews and observations, as well as youth-generated artifacts such as the iMovie. Additionally, pre- and post-tests will enable the research team to determine changes to the youths' understandings of scientific content and perceptions regarding participation in STEM enterprises and careers. Deliverables, such as youth-generated products, will be shared with local media and with relevant cultural centers, while empirical results will be widely disseminated through local and national conferences. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts, and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers. This project is also co-funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Fenice Boyd Regina Ciphrah
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This EAGER seeks to explore the state of research ethics in practice in science and, specifically, how ethics plays out in informal STEM institutions, through lenses of multiple cultural traditions and perspectives. By means of producing a documentary, Decolonizing Science, the project will engage scientists and informal STEM educators in considering how informal STEM institutions could re-envision their work to fundamentally embrace inclusivity and belonging. The exploratory process will challenge and inform informal STEM learning institutions and the scientists with whom they work to consider how to navigate contemporary social tensions, support research that values diverse perspectives, and promote decolonizing practices. A significant component of the project includes screenings, workshops, and difficult conversations, in conjunction with informal learning institutions that are already on the front lines of new language and knowledge creation. The project will be a collaborative process as participants' thoughts, views, and arguments will shape the project from the beginning. Once the film is made, collaboration will continue by engaging science-based practitioners at institutions that serve communities of color and that are invested in working towards greater diversity, inclusivity, equity, and access. Discussions related to the film's screenings will inform how informal learning institutions can radically re-imagine their work and their spaces, including teaching, curation, research, communication, and knowledge and literature production.

The film will explore the origins, creation, and evolution of Western science as an enterprise that can sublimate, marginalize and re-narrativize the practices, procedures, ethics, and contributions of the underrepresented people of color in science. Through focus groups, interviews, and facilitated discussions, this EAGER will document and share the interactions among scientists, informal STEM educators, and filmmakers as they explore how to practice more ethical science in communities of color, on their lands, and within their nations, as well as how science can be portrayed and enacted within informal STEM learning institutions. The project seek to challenge and shift both informal STEM learning institutions and the sciences, through a yet-untested, well-considered, and humane approach to ethical practices of science and their implementation in informal STEM learning institutions through a film and by envisioning possible futures.

This project is jointly funded by Directorate for Education and Human Resources/Advancing Informal STEM Learning Program, the Directorate for Social, Behavioral and Economic Sciences Ethical and Responsible Research program and the Directorate for Geosciences Education and Diversity program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kendall Moore Amelia Moore
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham