Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource research Professional Development, Conferences, and Networks
The challenge to the science communication field put forward by Bruce Lewenstein, of the sector becoming a ‘ghetto’ of women's over-representation (see the commentary by Lewenstein in this issue), is a very timely wake-up call. This Commentary however, elaborates and frames the pivotal and constructivist premises on which this phenomenon should be interrogated and understood on many levels. It is critical that we undertake a deeper introspection, beyond just simplistic head counts of the number of women and men in the field, if we are to make sense of the seeming paradoxes that pervade the
DATE:
TEAM MEMBERS: Elizabeth Rasekoala
resource research Media and Technology
SciGirls CONNECT 2 is a three-year NSF project that examines how the gender equitable and culturally responsive strategies currently employed in the SciGirls informal STEM educational program influences middle school girls’ STEM identity formation.
DATE:
TEAM MEMBERS: Rita Karl Alicia Santiago Karen Peterson Roxanne Hughes
resource research Public Programs
This poster was presented at the 2019 NSF AISL Principal Investigators meeting. The poster describes the Rural Activation and Innovation Network, in which four Arizona regions were selected for their uniqueness in geography and demographics to provide insights about barriers and solutions to implementing ISE experiences in rural communities.
DATE:
TEAM MEMBERS: Jeremy Babendure
resource project Professional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.

The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.

This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
DATE: -
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by bringing together youth (grades 2-5), their families, librarians, and professional engineers in an informal environment centered on engaging youth with age-appropriate, technology-rich STEM learning experiences fundamental to the engineering design process. The overarching aim is to better understand how youth's learning preferences or dispositions relate to their STEM learning experiences. It also seeks to build community members' capacity to inspire and educate youth about STEM careers. The project team includes the Space Science Institute's (SSI) National Center for Interactive Learning (NCIL), the University of Virginia (UVA) and the American Society of Civil Engineers (ASCE). This team builds on the scope and reach of a prior NSF-funded project called the STAR Library Education Network (STAR_Net). As an extension of this prior work, Project BUILD will collaborate with 6 public libraries (3 urban and 3 rural) and their local ASCE Branches. Two libraries have been selected to serve as pilots: High Plains Public Library in Colorado and the African-American Research Library and Cultural Center in Florida. All partner libraries will develop a plan for recruiting participants from groups currently underrepresented in STEM professions. Project BUILD's specific aims are to 1) Engage underserved audiences, 2) Build the capacity of participating librarians and ASCE volunteers, 3) Increase interest and engagement in STEM activities for youth in grades 2-5 and their families, and 4) Conduct a comprehensive education research project. Program components include the following: 1) Community Dialogue Events, 2) a Professional Development Program for partner librarians and ASCE volunteers, and 3) Development of a Technology-rich Programming Kit and Circulating STEM Kit program. Two research questions will be addressed: 1) What common factors might identify youth who engage in project activities and what factors might differentiate between youth who continue with program engagement and those who do not? and 2) What programmatic factors (i.e. design and composition of program activities, library recruitment, librarian engagement, professional engineer engagement, etc.) might influence youth's initial and continued engagement in project activities as well as youth's reported future career interests? An external evaluation will investigate the quality of the project's process as well as its impact and effectiveness. Benefits to the participating libraries' communities, library and engineering professionals, and the education community will be achieved through 1) Community Dialogue events; 2) Library and Librarian Outreach; 3) ASCE Outreach; and 4) Publication of Research and Evaluation results.

Project build website- https://www.starnetlibraries.org/about/our-projects/project-build/
DATE: -
TEAM MEMBERS: Paul Dusenbery Robert Tai Keliann LaConte Jeannine Finton
resource project Professional Development, Conferences, and Networks
Ecology Plus (Ecology+) is an NSF INCLUDES Launch Pilot project with a goal of increasing the participation of underrepresented minorities in a broad range of career pathways where ecology plays a role. This project recognizes that both innovative scientific research and wider societal participation are needed for effective and equitable solutions to environmental issues that directly impact societal well-being and national security. Both research and policy are enhanced by full participation of all sectors of society. Despite the existence of multiple programs over many years, barriers to the participation of underrepresented minorities in ecology persist. One overarching systemic issue remains critical: that insufficient connections among programs result in breaks along critical transition points in career pathways. Project activities will lay the groundwork by developing a regional approach to alliance-building that can be extended across the nation.

Ecology+ will use a collective impact framework -- characterized by a common agenda, shared measurement, mutually reinforcing activities, continuous communication, and backbone support -- to optimize career guidance and support for undergraduate students, graduate students and early career technical and professional scientists. Starting in the Washington-Baltimore region, key objectives of the project are to develop infrastructure for effective communications among partners with the capacity to expand nationally; map potential career pathways with associated sets of necessary competencies, opportunities and mentors, and; empower alliance participants to overcome institutional barriers and patterns of unconscious bias. Ecology+ will: a) establish an online mentoring platform; b) offer a career fair with motivational talks and guidance on individual career development plans; c) offer a series of relevant skills workshops; d) arrange research or internship experiences, and; e) facilitate awareness and networking opportunities with employers from agencies, business and nonprofit sectors. The value of Ecology+ lies in its comprehensive, integrated approach that will bring new partners and their resources into a transformative and systemic response to the key barriers affecting underrepresented minorities in science.
DATE: -
TEAM MEMBERS: Teresa Mourad George Middendorf
resource project Media and Technology
Underrepresented minorities (URMs) are less than 10% of engineering faculty, despite comprising nearly a third of the nation's population. A common explanation for their disproportionate representation, at the engineering faculty level, is related to a lack of access to effective mentorship from other faculty. This NSF INCLUDES Design and Development Launch Pilot project will expand a new mentoring and advocacy-networking paradigm to bring together two stakeholder groups: (1) underrepresented minorities (URMs) who are engineering faculty and (2) well-regarded (primarily non-URM) emeriti/retired engineering faculty. A previously-funded NSF project found that this mentor-mentee pairing was viewed favorable by both parties and beneficial, particularly by the URM engineering faculty. Because of these results, the investigators proposed to scale, test, and evaluate the approach on a broader scale by creating national infrastructural network partners to help increase capacity to serve a greater number of URM engineering faculty and to introduce tele-mentoring and training models to serve URM faculty who work in remote geographical locations with very little access to mentors.

The project will use a multi-phased phenomenological, mixed method research design to gain greater understanding of the ways in which the URM faculty and emeriti faculty experience the opportunities afforded by the project. Further, the investigators plan to collect data to examine how project participants perceive and experience conventional, direct communications (e.g., telephone calls, e-mail, and in-person meetings)through the mentoring process versus the use of Embodied Conversational Agents (ECAs), anthropomorphic interface agents that engage a user in real-time dialogue by using verbal-nonverbal channels to emulate the in-person experience. This project has the potential to broaden participation in the engineering professoriate and opens up new possibilities for supporting URM engineering faculty.
DATE: -
TEAM MEMBERS: Comas Haynes Valerie Conley Sylvia Mendez Kinnis Gosha Rosario Gerhardt
resource project Resource Centers and Networks
In this NSF INCLUDES Design and Development Launch Pilot the institutions of "Building on Strengths" propose to build and pilot the infrastructure, induction process, and early implementation of the Mathematician Affiliates of Color network. This network will consist of mathematicians of color from across academia and industry who want to invest time in, share their expertise with, and learn from students of color and their teachers. Building on Strengths will draw on basic needs cognitive theory to support these interactions and will focus narrowly on short and moderate term collaborations (from one month to a semester) between visiting mathematicians, students, and collaborating teachers that will involve three specific types of interactions: doing mathematics together as a habits-of-mind practice, talking about the discipline of mathematics and the experiences of mathematicians of color in that discipline, and relationship-building activities. The foundational infrastructure developed in the project will include systems for recruitment, selection and induction, a process for pairing affiliate mathematicians with classrooms, and support structures for the collaborations. To support the goals of the network a prototype virtual space will be developed in which real-time artifacts can be collected and shared from the classroom interactions. While Building on Strengths will pilot this program in the secondary context, once a viable model is established, scaling to K-16, as well as to other STEM fields, will be possible.

The research study in the project uses an exploratory sequential mixed-methods design and will be conducted in two phases. In the first, quantitative, phase of the study the following questions will be addressed: (1) Is the teacher-mathematician collaboration associated with a change for students in perception of basic human needs being met, mathematical or racial identities, or beliefs about mathematics or who can do mathematics? (2) Is the teacher-mathematician collaboration associated with a change for adults in perceptions of the role of basic needs or in adults' identities or beliefs about mathematics or who can do mathematics? In the second, qualitative, phase of the study, two types of interactions will be selected for in-depth qualitative study, identifying cases where groups of students experienced changes in their needs, identity, and beliefs. In this qualitative case-centered phase, the following questions will be explored: (1) What is the nature of the mentor-student interaction? (2) What aspects of the intervention do students feel are most relevant to them? (3) How did the implementation of the intervention differ from the anticipated intervention? The results of the study will help improve the infrastructure for, and better support the interactions between, mathematicians of color, students of color and their mathematics teachers; the outcomes will also shed light on how students experience their interactions.
DATE: -
TEAM MEMBERS: Michael Young Maisha Moses Albert Cuoco Eden Badertscher
resource project Resource Centers and Networks
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.

Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE: -
TEAM MEMBERS: Keivan Stassun Nicole Joseph Kelly Holley-Bockelmann William Robinson Roger Chalkley
resource project Media and Technology
Currently, many young people - especially girls and youth of color - lose confidence and interest in science, technology, engineering and math (STEM) pathways due to a perceived disconnect between their own identity and STEM fields. To address this challenge, Twin Cities PBS (TPT) is implementing SciGirls CONNECT2. This three-year Research in Service to Practice award examines how gender equitable and culturally responsive teaching strategies influence middle school girls' confidence, interest and motivation around STEM studies, and their choices around STEM careers. A set of research-based strategies, called the SciGirls Seven, are currently employed in SciGirls, an NSF-funded informal STEM educational outreach program serving 125+ educational partner organizations nationwide. The goal is to update and enrich the SciGirls Seven, providing educators with a critical, current, and more effective resource to motivate girls in STEM studies and careers. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Florida State University will conduct a formal research study investigating the hypothesis that STEM programs that use gender equitable and culturally responsive strategies contribute to girls' positive STEM identity development, including their sense of self-efficacy, persistence and aspirations around future STEM careers. This research will include a literature review and a study of girls' STEM identity creation. The mixed methods study will include quantitative and qualitative data collection and analysis measuring changes in students' STEM identity and teachers' confidence in STEM teaching. The quantitative data will come from the student, parent and teacher pre/post surveys. The qualitative research will be conducted via case studies at four sites and the qualitative data will include observations, focus groups and interviews. Girls at all partner sites will create videos that will allow the research team to gather additional insight. The independent firm Knight Williams, Inc. will conduct the project's external evaluation.

The project will work with a subset of 16 current SciGirls partners. These geographically diverse partners will reach youth in all-girls and co-ed informal STEM education programs in a variety of settings. More than half serve Hispanic or other minority populations. The updated strategies will be disseminated to the 2,500 educators within the SciGirls partner network and the 18,800 STEM education organizations of the National Girls Collaborative Project (NGCP) network. Dissemination of the strategies and literature review will focus on the informal STEM education field through publications and presentations, posts at PBS LearningMedia, a free online space reaching 1.5 million teachers and educators.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Roxanne Hughes Alicia Santiago
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane