Skip to main content

Community Repository Search Results

resource project Public Programs
The Hands On Children's Museum will build on two of its most distinctive features-an Outdoor Discovery Center and a Young Makers program-to create a Nature Makers program. The interdisciplinary project will link nature-based learning with maker activities that use natural materials. Partnerships with Native American tribes, scientists, maker groups, and others will enrich the staff-led offerings. Nature Makers addresses two of the most significant needs in early learning-inspiring early STEM education and connecting children with the outdoors. Nature Makers will increase children's exposure to outdoor tinkering to build the foundation for STEM success in school; educate parents, caregivers, and teachers about the important role outdoor exploration plays in STEM achievement; and stimulate children's curiosity about the natural world and increase the time they spend outside. Evaluation findings will be shared internally to inform continuous improvement of program offerings, and externally to serve as a model for outdoor making activities.
DATE: -
TEAM MEMBERS: Amanda Wilkening
resource project Public Programs
The Children's Museum at La Habra's Lil' Innovators Early Childhood STEM project will increase STEM skill and engagement among early childhood preschool teachers, disadvantaged preschoolers, and their parents. Delivered in partnership with three of La Habra's Head Start and California State Preschool program schools, the project will provide 224 preschoolers and 20 teachers with a year-long program offering increased developmental skills in STEM for underserved, low-income Hispanic students who are primarily English Language Learners. Teacher outcomes will include improved strategies for teaching STEM and increased teaching quality of STEM subjects. Parent outcomes include increased belief in the importance of STEM and increased ability to support their child's STEM learning. The standards-based education project will improve the museum's ability to serve its public by creating a community of practice consisting of a network of administrators, educators, and evaluators who will work together to improve the quality of STEM education for the youngest learners in this academically-challenged community.
DATE: -
TEAM MEMBERS: Maria Tinajero-Dowdle
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by bringing together youth (grades 2-5), their families, librarians, and professional engineers in an informal environment centered on engaging youth with age-appropriate, technology-rich STEM learning experiences fundamental to the engineering design process. The overarching aim is to better understand how youth's learning preferences or dispositions relate to their STEM learning experiences. It also seeks to build community members' capacity to inspire and educate youth about STEM careers. The project team includes the Space Science Institute's (SSI) National Center for Interactive Learning (NCIL), the University of Virginia (UVA) and the American Society of Civil Engineers (ASCE). This team builds on the scope and reach of a prior NSF-funded project called the STAR Library Education Network (STAR_Net). As an extension of this prior work, Project BUILD will collaborate with 6 public libraries (3 urban and 3 rural) and their local ASCE Branches. Two libraries have been selected to serve as pilots: High Plains Public Library in Colorado and the African-American Research Library and Cultural Center in Florida. All partner libraries will develop a plan for recruiting participants from groups currently underrepresented in STEM professions. Project BUILD's specific aims are to 1) Engage underserved audiences, 2) Build the capacity of participating librarians and ASCE volunteers, 3) Increase interest and engagement in STEM activities for youth in grades 2-5 and their families, and 4) Conduct a comprehensive education research project. Program components include the following: 1) Community Dialogue Events, 2) a Professional Development Program for partner librarians and ASCE volunteers, and 3) Development of a Technology-rich Programming Kit and Circulating STEM Kit program. Two research questions will be addressed: 1) What common factors might identify youth who engage in project activities and what factors might differentiate between youth who continue with program engagement and those who do not? and 2) What programmatic factors (i.e. design and composition of program activities, library recruitment, librarian engagement, professional engineer engagement, etc.) might influence youth's initial and continued engagement in project activities as well as youth's reported future career interests? An external evaluation will investigate the quality of the project's process as well as its impact and effectiveness. Benefits to the participating libraries' communities, library and engineering professionals, and the education community will be achieved through 1) Community Dialogue events; 2) Library and Librarian Outreach; 3) ASCE Outreach; and 4) Publication of Research and Evaluation results.

Project build website- https://www.starnetlibraries.org/about/our-projects/project-build/
DATE: -
TEAM MEMBERS: Paul Dusenbery Robert Tai Keliann LaConte Jeannine Finton
resource research Public Programs
This research paper critically explores the common definitions and perceptions of Making that may potentially disenfranchise traditionally underrepresented groups in engineering. Given the aspects of engineering design that are commonly integrated into Making activities, the Maker movement is increasingly recognized as a potentially transformative pathway for young people to developing early interest and understanding in engineering. However, “what counts” as Making can often be focused heavily on electronic-based and computational forms of Making, such as activities that involve 3D printers
DATE:
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Afterschool Programs
In 2017, Concord Evaluation Group (CEG) conducted a summative evaluation of Design Squad Global (DSG). DSG is produced and managed by WGBH Educational Foundation. WGBH partnered with FHI 360, a nonprofit human development organizations working in 70 countries, to implement DSG around the globe. In the DSG program, children in afterschool and school clubs explored engineering through hands-on activities, such as designing and building an emergency shelter or a structure that could withstand an earthquake. Through DSG, children also had the chance to work alongside a partner club from another
DATE:
TEAM MEMBERS: Christine Paulsen Marisa Wolsky Sonja Latimore Steven Ehrenberg
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource project Media and Technology
Underrepresented minorities (URMs) are less than 10% of engineering faculty, despite comprising nearly a third of the nation's population. A common explanation for their disproportionate representation, at the engineering faculty level, is related to a lack of access to effective mentorship from other faculty. This NSF INCLUDES Design and Development Launch Pilot project will expand a new mentoring and advocacy-networking paradigm to bring together two stakeholder groups: (1) underrepresented minorities (URMs) who are engineering faculty and (2) well-regarded (primarily non-URM) emeriti/retired engineering faculty. A previously-funded NSF project found that this mentor-mentee pairing was viewed favorable by both parties and beneficial, particularly by the URM engineering faculty. Because of these results, the investigators proposed to scale, test, and evaluate the approach on a broader scale by creating national infrastructural network partners to help increase capacity to serve a greater number of URM engineering faculty and to introduce tele-mentoring and training models to serve URM faculty who work in remote geographical locations with very little access to mentors.

The project will use a multi-phased phenomenological, mixed method research design to gain greater understanding of the ways in which the URM faculty and emeriti faculty experience the opportunities afforded by the project. Further, the investigators plan to collect data to examine how project participants perceive and experience conventional, direct communications (e.g., telephone calls, e-mail, and in-person meetings)through the mentoring process versus the use of Embodied Conversational Agents (ECAs), anthropomorphic interface agents that engage a user in real-time dialogue by using verbal-nonverbal channels to emulate the in-person experience. This project has the potential to broaden participation in the engineering professoriate and opens up new possibilities for supporting URM engineering faculty.
DATE: -
TEAM MEMBERS: Comas Haynes Valerie Conley Sylvia Mendez Kinnis Gosha Rosario Gerhardt
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Resource Centers and Networks
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.

Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE: -
TEAM MEMBERS: Keivan Stassun Nicole Joseph Kelly Holley-Bockelmann William Robinson Roger Chalkley